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AFIT-ENG-DS-13-D-04 
Abstract 

 

The Space Surveillance Telescope (SST) is a Defense Advanced Research 

Projects Agency (DARPA) program designed to detect objects in space like Near Earth 

Asteroids (NEAs) and space debris in the Geosynchronous Earth Orbit (GEO) belt.  

Binary hypothesis tests (BHTs) have historically been used to facilitate the detection of 

new objects in space.  In this dissertation, a multi-hypothesis test (MHT) detection 

strategy is introduced to improve the detection performance of the SST.  In this context, 

the MHT determines if an unresolvable point source is in the center, corner or  side of a 

pixel in contrast to a BHT, which only tests whether an object is in the pixel or not.  An 

experiment, recording observations of a known GEO satellite as it enters eclipse, is used 

to demonstrate improved probability of detection with the MHT by as much as 50% over 

existing BHT methods.  

In order to achieve optimal performance of the SST, alignment of the telescope is 

conducted by retrieving phase information from defocused point sources to determine the 

telescope’s aberrations and then the mirrors are moved for optical correction.  A new 

direct search phase retrieval technique for determining the optical prescription of an 

imaging system in terms of Zernike coefficients is described.  The technique provides 

coefficient estimates without the need to defocus point source images to generate phase 

diversity by using electric field estimates in addition to intensity data.  Simulated point 

source data shows the new phase retrieval algorithm avoids getting trapped in local 

minima over a wide range of random aberrations.  Experimental point source data are 

used to demonstrate the phase retrieval effectiveness.   
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ENHANCING GROUND BASED TELESCOPE PERFORMANCE WITH IMAGE 

PROCESSING 

 
I.  Introduction 

Equation Chapter (Next) Section 1 

The Department of Defense recently fielded an f/1 Mersenne-Schmidt telescope 

called the Space Surveillance Telescope (SST), which saw first light on 15 February 2011 

[1].  The SST has significantly advanced the United State’s ability to maintain space 

situational awareness (SSA) beyond that provided by the operationally employed 

Ground-based Electro-Optical Deep Space Surveillance (GEODSS) telescopes [2].  The 

main advantages of the SST are that it has a 3.5 m primary mirror and a 6 deg wide field-

of-view (FOV) [3].  In contrast, the GEODSS f/2.15 Ritchey-Chretien designed 

telescopes only have a 1 m primary mirror and a 1.68 deg FOV [2].  The larger primary 

mirror and increased FOV allow the SST to scan a larger portion of the sky in a shorter 

period of time with improved detection performance over GEODSS. 

 SSA is a critical military mission and it directly supports the US National Space 

Policy to “(p)reserve the Space Environment…the United States shall develop, maintain, 

and use space situational awareness information from commercial, civil, and national 

security sources to detect, identify, and attribute actions in space that are contrary to 

responsible use and the long-term sustainability of the space environment [4].”  The SST 

fills an important niche in the nation’s space surveillance network by providing timely 

and accurate updates to the Joint Space Operations Center’s (JSpOC’s) space catalogue 

[5, 6, 7].  Through synoptic search of deep space (i.e. GEosynchronous Orbit (GEO) and 

Highly Elliptical Orbit (HEO)) on a regular basis, the SST can detect and determine the 
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orbits of previously unknown space objects.  These previously unknown space objects are 

commonly called uncorrelated targets (UCTs).  Timely updates of these UCTs to the 

JSpOC’s space catalogue support vital decision making by US Strategic Command’s 

Joint Functional Component Command for Space in support of the US National Space 

Policy.  

Three major threats from space to both our satellite networks and the earth have 

been identified.  These threats include: space debris, micro-satellites, and near earth 

asteroids (NEAs) [8, 9, 10].  The detection and characterization of these threats can 

provide the early warning necessary to take any responsive actions.  While the SST was 

designed for the military mission of detecting debris and microsatellites in deep space, it 

is also being used for the detection of other astronomical objects like NEAs.  The SST’s 

NEA detection work is being done in partnerships with the US Naval Observatory 

(USNO) and the National Air and Space Administration (NASA).  However, the US Air 

Force’s primary concern is the protection of critical national space assets in earth orbit 

from space debris and micro-satellites [11].  

Figure 1 illustrates the known objects (both satellites and debris) that are 

cataloged by NASA and highlights the sheer number of objects currently being tracked.  

The SSA functions that are critical to avoiding collisions of these objects in space consist 

of the detection of UCTs, accurately determining their orbits, and maintaining an up-to-

date space catalogue.  The SST’s main roles in SSA are the detection and orbit 

determination of UCTs in deep space.  GEO can be distinguished in Figure 1 as the dense 

ring of objects near the equatorial plane.  In contrast, radar system like the space fence 
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are better suited for finding objects in Low Earth Orbit (LEO), which is the dense cloud 

of objects near the earth in Figure 1 [12]. 

 

 

Figure 1. A NASA produced image depicting the number of satellites and debris tracked in 
earth’s orbit.  (Note that the objects are not to scale) [12] 
 

A 3-D optical design layout and scale image of SST is shown in Figure 2.  The 

driving design requirements for the telescope differ from more typical astronomical 

telescopes.  The main difference is that SST needs to be able to scan deep space on a 

regular basis to detect and track UCTs versus maintaining accurate orbits of known 

objects.  In order to accomplish that SSA mission, the Mersenne-Schmidt design was 



4 
 

selected for both its wide FOV and compact design [13].  The size of the primary mirror 

was driven by the need to detect small faint objects with relatively short integration times 

to avoid streaking of the satellite image across multiple charged coupled device (CCD) 

pixels.  One drawback to the design is that the optical wavefront is curved in the image 

plane due to telescope aberrations.  To alleviate those optical aberrations, a unique curved 

detector array was fabricated and implemented in the SST camera [14]. 

 

 

                                Figure 2. An optical design schematic and scale picture of the SST. 
 

  
1.1 Motivation  

This dissertation investigates how image processing can improve the SST’s 

detection capabilities without requiring physical design changes to the telescope.  The 

two objectives that were introduced in the prospectus for this work have been met and are 

listed below. 
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      Objective 1.  Characterize the SST using a novel aberration estimator 
      Objective 2.  Enhance the SST’s performance using detection and estimation theory 
 

The SST was designed and built by Defense Advanced Research Projects 

Agency’s (DARPA) and has completed its system test and demonstration (T&D).  For 

that phase, a set of metrics were defined to evaluate the telescope’s ability to perform the 

SSA mission.  According to the SST Phase I System T&D Procedure, “(e)ach system 

performance metric (SPM) is traceable to component and subsystem specifications of the 

underlying technology development…(t)hey are the core metrics that constitute the crux 

of the SST’s performance, those that will enable the efficiencies of synoptic search [15].”  

Therefore, improvements to these SPMs will provide more overall system capability. The 

metrics are: 

I. Search rate: Ω [deg2/hr] vs. mccd (instrument magnitude) 
II. Metric accuracy: ΔΘ [arc sec] at nominal mccd 
III. Photometric accuracy: Δ mccd at nominal mccd 
IV. Sensitivity: mccd vs. t (integration time) in various tracking modes 

 
Metric I measures the search rate, Ω, with different integration times (i.e. target 

instrument magnitude (mccd)) to quantify the performance traded off between sensitivity 

and search rate.  Metric II measures the telescope’s metric accuracy, ΔΘ, as a function of 

mccd.  Metric accuracy represents error in the estimates of an object’s azimuth and 

elevation in units of arc seconds.  Metric III evaluates the variance of mccd and is 

produced by comparing the object of interest brightness (i.e. digital counts) to the known 

brightness of stars in the FOV.  Metric IV, the system sensitivity, is measured in terms of 

mccd and is evaluated as a function of integration time, t. 

The remote sensing research accomplished and discussed in this dissertation can 

improve the SST’s performance on three of the four SPMs.  In particular, the multi-
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hypothesis test (MHT) that is introduced in Chapter IV has new properties that could be 

used as the kernel of an entirely new image processing scheme.  This algorithm has the 

potential to significantly outperform the baseline algorithm.  Metric accuracy can be 

improved with the sub-pixel position information inherent to the MHT.  Photometric 

accuracy should also be improved because the output of the MHT can be used to estimate 

photons in both the pixel in which the object is detected and the neighboring pixels.  

Finally and most importantly, the sensitivity gains provided by the MHT are 

demonstrated using experimental data from the SST.   

 

1.2 Accomplished Work 

Improving the detection performance of the SST through image processing 

enhances the detection of dim objects and the rejection of false alarms without requiring 

significant changes to the telescope’s design or operations [16].  The following three 

concepts were identified in the prospectus and investigated in the research for improving 

the detection sensitivity of the SST. 

1.  Determine a better way to retrieve phase information from the SST data.  
2.  Investigate multi-hypothesis testing (MHT) to improve detection performance. 
3.  Mitigate star crossings from affecting the detection of an object.  
 

This document is divided into six chapters that provide background, details on the 

work accomplished, and final conclusions that are intended to show how these concepts 

were investigated.  In Chapter II, the background information provided includes a 

literature review, an introduction to the fundamental image processing concepts used in 

this work, and the foundation for this research.  There are two chapters on phase retrieval.  

Chapter III describes a phase retrieval technique with a long exposure atmospheric model 
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useful for the current SST shutter camera, while in Chapter V, phase retrieval with a short 

exposure model is investigated for a future frame transfer camera.  Phase information is 

important because it is used to quantify the presence of optical aberrations in the 

telescope [17].  More accurate information about the phase should help improve the 

process of focus and alignment resulting in  sharper images.  Focusing reduces the point 

spread function (PSF) and increases the signal-to-noise ratio (SNR) so that the SST’s 

detection performance will be improved using its existing and future detection 

algorithms.  The Cramer-Rao Lower Bound (CRLB) calculations demonstrate that 

improved aberration estimates are possible in certain coefficient ranges. New algorithms 

are then derived to accomplish improved optical aberration estimates [18, 19].   

Both long and short exposure atmospheric models are used in the different phase 

retrieval techniques investigated [20].  The long exposure model is necessary for the 

current camera and physical shutter on the SST system.  However, future variants of the 

SST or other ground-based three mirror telescopes like the Large Synoptic Survey 

Telescope (LSST) may benefit from phase retrieval with a short exposure atmospheric 

model [21].  For the SST, if a new frame transfer camera is procured it would enable the 

telescope to take short exposure images.  Both long and short exposure phase retrieval 

techniques have performance advantages and limitations that are discussed in Chapter VI.   

Phase retrieval is also critical to achieving the potential detection and false alarm 

improvements afforded by the new detection algorithm described in Chapter IV.  The 

new detection algorithm leverages the long exposure phase retrieval outputs to form the 

PSF estimate used in a new multi-hypothesis test (MHT) for the detection of dim objects.   

Choosing the best available detection algorithm is critical to maximizing detection 
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sensitivity of the telescope.  A thorough comparison of the current and proposed 

detection algorithms using satellite eclipse experiment data provides a side-by-side 

comparison of techniques.  Algorithm performance assessment is based on detection 

improvement, computational burden and implementation complexity.  The MHT 

algorithm mitigates the effects of aliasing caused by undersampling of the image and 

employs a new method of background noise calculations that reduces the noise 

degradation associated with star crossings. The MHT significantly improves the 

probability of detecting uncorrelated targets (UCTs) over the algorithm currently used by 

the SST.  The Chapter VI conclusions highlight the significant improvement in the SST’s 

detection sensitivity and the phase retrieval findings discovered in this research effort.  

Suggestions for future areas of investigation to further enhance the performance of the 

telescope are also discussed.  

 



9 
 

II. Background  
Equation Chapter (Next) Section 2 

The act of finding space objects with ground based telescopes has been performed 

by astronomers since the 17th century [22].  The incorporation of CCD arrays in place of 

film or the human eye has enabled modern image processing techniques to be used for 

detection of space objects [23, 24, 25].  The SST’s current detection method is based on 

an algorithm used for the Lincoln Near Earth Asteroid Research (LINEAR) mission 

conducted at the Experimental Test Site near Socorro, NM.  Viggh et al. described the 

LINEAR detection algorithm using a similar block diagram to the one shown in Figure 3.    

 

 

                                           Figure 3. The SST detection block diagram [25] 
 

The SST’s current demonstration software uses input data that is comprised of three to 

five image frames of the sky in either a sidereal or a satellite track mode.  Each frame is 

exposed over a user defined integration time period optimized to find UCTs.  Image 

registration corrects for telescope pointing errors by using stars with known coordinates 

in each of the image frames.  The single frame point detection of an object is performed 

in a two step process of background suppression normalization followed by binary 

quantization, which is described mathematically in Section 2.4.  In each frame, adjacent 

pixels that have objects above the detection threshold are clustered together and classified 

as a single object.  The algorithm then determines the centroid and extent of each 
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clustered object.  The data is then filtered using a velocity matched filter to remove any 

objects not moving at the rate of the object(s) of interest.  This is possible because in rate 

track mode the object in Earth’s orbit will be stationary and the stars will be moving in 

the image between frames at the sidereal rate.  The opposite is true when the telescope is 

in sidereal track mode.  In addition, in order to reduce false alarms without changing the 

single frame detection threshold, objects that are not detected in three to five consecutive 

frames are also removed.  Once the UTC is identified, the visual magnitude of that object 

is determined with a plate model that uses calibration stars in the FOV [3, 26].  Finally, 

the orbit determination of the UCT is determined by revisiting the object’s initial 

coordinates at a later time.    

The critical step in the existing software described above is the single frame point 

detection step because only objects that exceed the detection threshold have the potential 

for being discovered by the detection algorithm.  Therefore, improvements in single 

frame point detection will improve the overall performance of the system.  Two possible 

methods for improving the single frame detection are reducing the spot size to increase 

the pixel SNR or to use a matched filtering operation based on a model of the PSF.  The 

phase retrieval methods discussed in this dissertation have the potential to improve the 

understanding of the telescope’s aberrations for focus and alignment.  These methods 

could be used to decrease spot size and the detection methods are proven to provide 

enhanced single-frame probability of detection.  

The background provided in this section is intended to cover the fundamental 

concepts reviewed in literature pertinent to the completed research.  The telescope model, 

Zernike polynomials and atmospheric models described are well accepted in the field of 
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applied optics and form the underlying principles for the new techniques developed in the 

phase retrieval and detection chapters.    

 

2.1 Telescope Model 

 For both phase retrieval and the MHT, a wave model of the telescope is used to 

describe the optical aberrations and resulting PSF model.  The aberrations are 

parameterized using Zernike polynomials because they are directly related to the 

wavefront errors associated with the optical prescription of the telescope [17].  In 

addition, the Zernike polynomials can be used to model the atmosphere for short 

exposure imagery [27, 28].  The polynomials are defined on the unit circle and form an 

orthonormal basis set for polynomial decomposition of wavefront error [29].   

 

2.1.1  Zernike Polynomial for Defocus 

One of the easiest ways to understand how wavefront errors are introduced into an 

optical system is by studying the aberration known as defocus.  In an ideal single lens 

optical system, the rays of light associated with a plane wave produced by an object 

infinitely far from the lens (effectively a point source) are focused to a diffraction-limited 

spot at the focal point of the lens as illustrated in Figure 4 [30, 31].  Moving the image 

plane before or after the focal plane causes defocus to occur, this introduces a wavefront 

error in the pupil plane that can be quantified using the Zernike polynomial for defocus.  

The farther the image plane is from the focal plane, the more the Zernike polynomial for 

defocus has to be scaled using the Zernike coefficient for defocus to accurately model the 

additional wavefront error of the optical system. 



12 
 

 

 

Figure 4. Illustration depicting how moving the image plane away from the focal plane of a single 
lens system introduces a 2-D wavefront phase error that can be parameterized by the Zernike 
polynomial for defocus.   
 

To produce the wave model of a telescope, the aberrations are summed together in 

its exit pupil, where the aberration free pupil transmittance function, A(u,v), has the 

coordinates u and v in the pupil plane. Wavefront error, W(u,v),  caused by defocus is 
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introduced into the pupil function using the Zernike polynomial for defocus, 4 ( , )u vφ , 

which is [31]   

 2 2
4 ( , ) 3.464( ) 1.732.u v u vφ = + −  (2.1) 

The amount of focus error is captured by scaling 4( , )u vφ  with a Zernike coefficient for 

defocus, Z4, such that   

 4 4( , ) ( , ).W u v Z u vφ= ⋅  (2.2) 

An image of the unscaled 4( , )u vφ  is shown at the bottom of Figure 4.   

 

2.1.2  Zernike Polynomials and the Generalized Pupil Function 

Compressing the notation from two dimensions (2-D) to one (1-D) for simplified 

presentation, the wavefront error, ( )1 ,W u  in an optical system can be decomposed into N-

number of Zernike polynomials, ( ) ( )1 1 1 ,Nu uφ φ−  represented as 

( ) ( )1 1 1 1 1( ) ... ,N NW u Z u Z uφ φ= ⋅ + + ⋅                  (2.3) 

where 1u  is a coordinate in the pupil plane and 1 NZ Z−  are the Zernike coefficients [31].  

Images of the first eleven lower order Zernike polynomials, 2 11 to ,φ φ  except piston, 1,φ   

are shown in Figure 5.  Each of these lower order polynomials can be associated with 

aberrations that arise from imperfection in the optical design or optical alignment and are 

used in the SST’s current alignment process [17]. 
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                                     Figure 5. Images of Zernike polynomials numbers 2-11 
 

The aberrated wavefront error is represented in the generalized pupil function, 

( )1 ,uP   as  

( ) ( ) ( )1 1 1exp ,u A u j W u= ⋅  P                                     (2.4) 

where ( )1A u  is the pupil transmittance function [31].  From the generalized pupil 

function, a model of the electric field, H(m) in the image plane as a function of image 

plane pixel coordinates, m, is computed using a discrete Fourier transform, 

( ) ( )

( )
1

1 1

1

( ) exp 2
u

H m P u j mu

P u

π=

=   

∑
F

                                  (2.5) 

and the corresponding optical PSF, h(m) is 

( ) ( ) ( )2 *( ) .h m H m H m H m= = ⋅             `                  (2.6) 

 

2.1.3 Intensity Model and PSF Estimation 

The images of stars that are recorded by a telescope can be modeled using its PSF.  

The intensity model for the star irradiance centered on the optical axis is  

 1( ) ( ) .i m h m Bθ= ⋅ +  (2.7) 
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It includes additional terms to account for the background light, B, and the total number 

of photons emitted from the star per integration time, 1θ  [32].  Having an accurate PSF 

and intensity model for the stars is critical for both the phase retrieval and detection 

algorithms that are explored in this work. 

 

2.2 Phase Retrieval from Stellar Images 

 Phase retrieval is a set of techniques used to determine the phase aberrations of an 

optical system using point source image intensity data (i.e. system impulse response).   

The SST phase aberrations must be recovered using post processing because the focal 

surface array cannot measure the phase directly.  The existing phase retrieval methods 

identified from literature include curvature sensing, least squares fitting and the 

Gerchberg-Saxton algorithm [33, 34, 35].  The predominate limitation of curvature 

sensing and least squares fits is that they require the point source image to be defocused 

to generate enough phase diversity to distinguish the contribution of each of the 

polynomial to the total wavefront error and corresponding intensity in the image plane 

[17, 35].  The Gerchberg-Saxton (GS) algorithm on the other hand is limited because it 

produces a wrapped 2-D phase for larger aberrations.  Attempts have been made to 

produce reliable 2-D phase unwrapping algorithms, but their performance is ultimately 

limited by branch cuts and noise [36, 37].   

 All the aforementioned phase retrieval techniques require short exposure images 

to work in the presence of an atmosphere.  When long exposure imagery is used for phase 

retrieval these methods prove unreliable [18].  A method that works to some extent with 

the long exposure imagery and has been used to estimate the SST’s optical prescription is 
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the Donut software.  However, the phase retrieval with Donut was only conducted on 

nights with excellent seeing, which minimized the effects of the atmosphere [17].    

The current process for alignment of the SST’s optics is critically reliant on the 

Donut software.  The Donut software’s dependence on curvature sensing for its initial 

estimates of the lower order Zernike aberration coefficients (Z2-Z6) is a problematic point 

because the SST alignment process requires Zernike coefficients up to at least Z11.  A 

second weakness in the method is that curvature sensing does not account for the 

atmospheric blurring, so poor seeing conditions will cause error in the initial Zernike 

estimates.  To mitigate this known limitation, the site engineers monitor the seeing 

conditions and only align the optics on nights with good atmospheric conditions 

( )0 10 cm .r ≥   The third weak point in the algorithm is that the telescope must be out of 

focus to work, but in the process of refocusing the telescope the aberrations are likely to 

change.   

With future SST sites planned in places with less ideal atmospheric seeing 

conditions than New Mexico, there will be a need to correctly estimate the Zernike 

coefficients in poor atmospheric conditions.  For instance, sites surveyed in Australia 

have seeing parameter estimated as poor as an 0r  of 6 cm on average.  Therefore, finding 

a better phase retrieval method that can more reliably estimate higher order Zernike 

coefficients, account for long exposure atmospheric effects, and work in-focus should 

help to better align the SST and produce a more accurate PSF model.   

 In this dissertation, two new phase retrieval approaches that can improve the 

performance of the SST are described.  Both techniques achieve joint estimation of the 

static telescope aberrations without requiring defocusing of the telescope.  This is more 
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useful because moving the SST’s secondary and tertiary mirrors for defocusing is not 

practical on a regular basis.   In addition, changes to the phase errors over time are not 

measurable with the current phase retrieval techniques from focused star images so the 

phase errors cannot be continuously monitored or removed.  The estimation of the 

telescope’s PSF model from a focused spot is used for the MHT.   Also, a more accurate 

PSF could improve the SST’s detection performance. 

 

2.2.1 CRLB for Zernike Coefficients 

 In order to explore the theoretical performance of jointly estimating Zernike 

coefficients for unbiased estimators, the Cramer-Rao lower bound (CRLB) is used to 

provide the statistical lower limit for variance of estimated Zernike coefficients [38].  

Fienup et al. derived the CRLB for estimates of Zernike coefficients to characterize the 

aberrations in the Hubble Space Telescope (HST) using phase retrieval [32].  The CRLB 

derived for the HST Zernike estimates did not include a parameter for the atmosphere 

because the HST is above the atmosphere.  A derivation for the CRLB for Zernike 

coefficient estimates that includes the seeing parameter in Chapter III provides a tool for 

comparing the theoretical performance of the long exposure atmospheric phase retrieval 

method with phase retrieval when no atmosphere is present [19]. 

 

2.2.2 Least Squares and Gerchberg-Saxton Phase Retrieval 

 In their paper, Krist et al. describe a Levenberg-Marquardt least-squares (LS) 

method to estimate the low order Zernike coefficients from imagery data for the 

aberrations in the HST before and after correction [34, 35].  In order for the LS technique 
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to work, it required them to decouple the aberrations by defocusing the telescope to 

introduce phase diversity.   In Krist’s paper, the lower order aberrations are determined 

and the remaining phase errors are retrieved using Gerchberg-Saxton (GS) phase retrieval 

[34].  The decomposition of the remaining phase into Zernike polynomials is possible 

because the phase errors were small enough that they remained unwrapped.  Using the 

orthonormality of the Zernike polynomials, they determine the magnitude of the Zernike 

coefficients from the GS phase.   

The process for GS phase retrieval is illustrated in Figure 6 [34].  The algorithm 

begins with initialized wavefront error, ( )1 ,W u  by multiplying reasonable initial 

conditions for the Zernike coefficients, ( )1 2, ,..., ,NZ Z Z  with their respective Zernike 

polynomials, ( )1 2, , ,Nφ φ φ  represented as 

 ( ) ( )1 1 1 1 1( ) ... ,N NW u Z u Z uφ φ= ⋅ + + ⋅  (2.8) 

where 1u  is a coordinate in the pupil plane and N is the total number of Zernike 

coefficients to be estimated.  The aberrations are represented in the generalized pupil 

function as  

 ( ) ( ) ( )1 1 1exp ,u A u j W u= ⋅  P  (2.9) 

where, ( )1A u  is the pupil function.  From the generalized pupil function a model of the 

electric field, H(m,W), in the detector plane as a function of CCD pixel coordinates, m, 

and pupil plane wavefront, W, is computed using a discrete Fourier transform, 

 ( ) ( ) ( )
1

1 1( , ) exp 2 ( ) exp
u

H m W P u j mu h m j mπ ϖ= = ⋅  ∑   (2.10) 
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where ( )mϖ  is the phase of the electric field in the image plane. The square root of the 

measured PSF estimated from the image intensity data, ( )ˆ ,h m   replaces the square root 

of the predicted PSF, ( ),h m  which is output from the fast Fourier transform (FFT).  

Then the new field is inversely Fourier transformed to obtain a new estimate for the 

phase in the pupil plane.  Next, the estimated pupil function, 1( ),A u′  is replaced by the 

known pupil and the process is repeated for a fixed number of iterations (300 iterations 

for the GS phase retrieval algorithms used in this dissertation) to estimate the phase, 

( )1Ŵ u [31].  While the technique provides a wrapped phase that is difficult to unwrap for 

Zernike decomposition, it also provides estimates of the electric field in the focal plane.  

The estimated electric field, ( )ˆ ,H m  proves useful in estimating the Zernike coefficients 

with the short exposure atmospheric technique described in Chapter V.    
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                                Figure 6.  Gerchberg-Saxton phase retrieval block diagram 
 

2.2.3 Curvature Sensing 

Roddier developed the curvature sensing method to determine the low order 

aberrations in a telescope by defocusing the image [33].  The presence of aberrations 

causes the intensity of the edge of the defocus spot to curve in a way that can be used to 

determine the Zernike coefficients.  Later, a single plane technique for curvature sensing 

was developed by Hickson [39].  Single plane curvature sensing gives the initial 

estimates used by the Donut algorithm [17].  Those estimates are then locally adjusted to 

refine the estimate using the Zemax® optical ray tracing software and tested on the 

telescope to see if the aberration estimates become better or worse in an iterative 

alignment process. 

 

 

( ) ( ) ( )1 1 1
ˆexpu A u j W u = ⋅ P ( )( ) exph m j mϖ⋅  
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ˆexpA u j W u ′ ⋅ 

Input phase error,                  
W(u1), with initial 
conditions

Output 
estimated phase 
error,  ,      ( )1

ˆ .W u

F
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2.3 Atmospheric Models 

 Two different models for the atmosphere can be used to determine the 

atmospheric effects on the total phase and PSF of the optical system.  The long exposure 

atmospheric model applies when exposure times of images viewed through the Earth’s 

atmosphere are much greater than 10 ms [20].  Whereas, the short exposure atmospheric 

model holds for exposure times that are much less than 10 ms.  The two different models 

affect the total phase and PSF in different ways, and therefore change the method of 

phase retrieval techniques required to determine an accurate model of the telescope’s 

phase errors and PSF. 

 

2.3.1 Long Exposure Atmosphere 

Because SST uses a shutter with an integration time greater than 25 ms, an 

accepted model for that atmosphere is a long-exposure atmospheric transfer function, 

which is defined by Goodman as [20]  

 ( )
5

3
2

2
0

exp 3.44 .atm
f uu
r

λ  ⋅ ⋅ = −  
   

H  (2.11) 

In Eq. (2.11), λ  is the mean wavelength, f  is the telescope focal length, 2u  is spatial 

frequency,  and 0r   is the atmospheric seeing parameter.   The transfer function of the 

optical system, ( )2 ,opt uH   can be determined from by taking the Fourier transform, ,F  

of the modeled optical PSF, ( ),opth m as 

 ( )2 ( ) .opt optu h m =  H F  (2.12) 
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 The long exposure PSF, ( ),Lh m  is then computed using the inverse Fourier transform, 

1,−F  of the combined atmospheric and optics transfer functions.  The effect of the finite 

square pixel width, a, is determined using a rectangle function with the following transfer 

function  

( ) [ ]2 ( ) .pixel u rect a m= ⋅H F                          (2.13) 

The modeled PSF centered on a pixel is then computed as   

( ) ( ) ( ) ( )1
2 2 2 .L opt pixel atmh m u u u−  = ⋅ ⋅ F H H H            (2.14)  

By including the effects of the long exposure atmosphere in the PSF, the point source 

image intensity model, ( ),Li m  becomes  

 1( ) ( ) .L Li m h m Bθ= ⋅ +  (2.15) 

 

2.3.2 Short Exposure Atmosphere 

For ground based telescopes with frame transfer cameras, such as potential future 

variants of the SST, the exposure time can be limited to a period where the short 

exposure model applies.  The short exposure atmosphere can be described by a set of 

Zernike polynomials, which have coefficients that are zero mean Gaussian random 

variables [27, 28, 40]. Therefore, the wavefront error for a telescope with a short 

exposure atmosphere, _ ,total sW   can be represented by expanding Eq. (2.3) to include the 

atmospheric contribution to the Zernike coefficients, _2 _  to ,N atmatmZ Z  along with the 

static telescope optical aberrations Zernike coefficient, _2 _  to .N optoptZ Z   The total short 

exposure wavefront error, ,SW  from both the static optical aberrations and the 
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atmospheric aberrations can be describe using the linear combination of the scaled 

polynomials  

 ( ) ( )2 _ 2 _ 2 _ _... .S opt atm N opt N atm NW Z Z Z Zφ φ= + ⋅ + + + ⋅  (2.16) 

By using the combined atmosphere and telescope wavefront error from Eq. (2.16) and 

then inserting it into Eqs. (2.4), (2.5) and (2.6) the combined PSF of the short exposure 

atmosphere and the telescope, ( ),Sh m and is found as,  

 ( ) ( )1 1

1

2

2
1( ) .Sj W u j mu

S
u

h m A u e e π⋅= ⋅ ⋅∑  (2.17) 

To include the pixel effect the short exposure OTF, ( )2 ,S uH is 

 ( ) [ ]2 ( ) ,S Su h m=H F   (2.18) 

and the pixilated short exposure PSF, ( )_ ,S pixh m  is 

 ( ) ( ) ( )1
_ 2 2 .S pix S pixelh m u u−  = ⋅ F H H   (2.19) 

 Then the short exposure intensity model, ( ),Si m is computed as 

 1 _( ) ( ) .S S pixi m h m Bθ= ⋅ +  (2.20) 

Accurate modeling of the long and short exposure PSF and corresponding intensity 

models is critical for both long and short exposure phase retrieval.  In addition, a MHT is 

not possible without an accurate long exposure image intensity model, ( ).Li m    

 

2.4 Detectors 

 Two types of optical detection processes of unknown space objects with ground 

based telescopes are discussed in the literature.  The first type of detection algorithm is 

based on images with a limited exposure time such that objects in the field of view can be 
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treated as point sources [25, 41, 42].  In the other type of detection algorithm, the 

integration time is longer and the system is not tracking the object causing each of the 

moving objects to streak over multiple pixels within the frame [23, 24]. The image 

processing technique for the detection of space objects used by the SST limits the 

exposure time such that the objects can be treated as point sources.  Therefore, the 

detection algorithms covered in the comparative analysis in this body of work are 

designed to detect point sources not streaks. 

 The three single frame detection schemes based on point sources images 

identified to date are background suppression normalization & binary quantization, linear 

threshold correlation, and non-linear threshold correlation [25, 41, 42].  All three 

detectors can be derived from a binary hypothesis test expressed as the following 

likelihood ratio tests (LRT) for uniform cost and equal priors [1] 

( ) ( ) [ ]( )
( ) ( ) [ ]( )

1

0

1

0

, , 1, |
1,

, , 1, |

H

d

d H

P d w z w z M H
P d w z w z M H

∀ ∈ >
Λ =

∀ ∈ <
                 (2.21) 

where ( , )d w z  is the image data, w and z are integer pixel coordinates and dM  is the 

number of pixels in one dimension of a chosen square window in detector plane. In this 

case, 1H  is the hypothesis that an object is present in the pixel of interest and 0H  is the 

hypothesis that an object is not present in the pixel of interest.  The joint conditional 

probability of the data given hypothesis { }, 0,1iH i ∈  is true, is 

( ) ( ) [ ]( ), , 1, |d iP d w z w z M H∀ ∈ . 
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2.4.1 Point Detection 

The detector currently used by the SST is based on background suppression 

normalization and binary quantization, which is a process of detecting an object in a 

single CCD pixel.  It will be also referred to as either a point detector or the baseline 

detector.  As stated at the beginning of the chapter, the detection algorithm  currently 

used in the SST is adopted from the algorithm developed for LINEAR [25].  

Mathematically, the single frame point detection of an object from the SST imagery data, 

( ), ,x yd c c  in a pixel with coordinates ( ),x yc c  is performed as  

( )
1

0

( ( , ) )
, ,

H

x y
x y

H

d c c B
SNR c c γ

σ
− >

=
<

                             (2.22) 

where B is the local background, σ is the standard deviation of the noise, and γ is the 

detection threshold.  The background, B, can be computed as the local sample median of 

the data,  

     ( ) ( ) [ ]median , , 1, ,dB d w z w z M= ∀ ∈                           (2.23) 

and the local standard deviation is 

2

21 1
2

( , )
,

d dM M

w z

d

d w z
B

M
σ = =≈ −

∑∑
                      (2.24) 

where dM  is the number of pixels in one dimension of a chosen window in the detector 

plane centered on the pixel of interest, ( ), .x yc c   Pixels with a SNR greater than the 

detection threshold are classified as containing a target and passed on for further 

processing. 
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For this method of single frame point detection, the SNR is degraded significantly 

because the SST’s PSF is much larger than the size of a single pixel, therefore the SST 

data is binned into 2 by 2 pixels.  While this method is relatively effective, its 

performance is still inhibited by two key physical limitations.  The first issue with this 

detector is that the telescope cannot focus the light from a star into a binned pixel causing 

a decrease in SNR output of the point detector.  The second is that the objects are not 

always centered on a single binned pixel so that when an object falls in the corner or side 

of a pixel the SNR is greatly reduced.  

 

2.4.2 Correlation versus Point Detection 

The correlator is designed to achieve a chosen probability of false alarm, ,FAP   

under the 0H  case and the image noise is modeled as Gaussian, which matches the SST 

noise distribution.  A Poisson distribution for noise would also be equally valid, however 

Pohlig’s derivation using that assumption led to a detector that was dependent on target 

irradiance [42].  To remove the detector’s dependence on target irradiance a log 

approximation is made assuming that the target irradiance is low.  Then the paper 

concedes that the distribution of the noise for these dim objects would not be Poisson, but 

have a similar distribution.   

By choosing to use a Gaussian noise distribution the LRT becomes 

[ ]
[ ]

( )

( )

2
2

1

2
2

0

1 , ( , )
2

1 1 1
1 ,0 2

1 1

1
| 2 1,
| 1

2

d d L

d d

M M d w z B h w z
H

w z
G M M d w z B

H

w z

eP d H
P d H

e

θ
σ

σ

πσ

πσ

− − −    

= =
− −    

= =

>
Λ = =

<

∏∏

∏∏
   (2.25) 
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where w and z are pixel locations in the window, and the long exposure PSF is ( ), .Lh w z  

The value dM   is the total number of pixels in the window, B is the background photon 

count in the image, θ  is the space object’s irradiance, and σ  is the standard deviation of 

the noise.  The sufficient statistic for the LRT is designed to maintain the same false 

alarm rate as the baseline detector, which is determined by the 0H  case.  Taking the 

natural log, Eq. (2.25) reduces to the following form  

( ) ( ) ( )
1

0

2
2

1 1

1log 2 ( , ) 2 , ( , ) ( , ) 0.
2

d d
H

M M

G L L L
w z

H

B h w z d w z h w z h w zθ θ θ
σ= =

> Λ = − ⋅ + ⋅ −  <∑∑  (2.26) 

Since the PSF can be estimated independently from auxiliary processes, Eq. (2.26) can be 

rearranged as  

( )
1

0

2

1 1 1 1

( ( , ) ) ( , ) ( , ) .
2

d d d d
H

M M M M

L L
w z w z

H

d w z B h w z h w zθ
= = = =

>  −  <∑∑ ∑∑           (2.27) 

The selection of θ will be chosen to achieve the desired threshold.  To convert Eq. (2.27) 

into a sufficient statistic in terms of signal-to-noise ratio (SNR), the background 

suppressed data is a new random variable, 2 ,d  with zero mean in the 0H  case [2], 

2 ( , ) ( , ) .d w z d w z B= −                                      (2.28) 

The correlation of the PSF with the background suppressed data then becomes  

( )2
1 1

, ( , ),
d dM M

L x y
w z

d w z h w c z c
= =

− −∑∑                                (2.29) 

where xc  and yc  are the coordinates of the pixel being tested.  The resulting quantity also 

has a mean, 2 ,µ  where  
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( )

( )

2 2
1 1

2
1 1

 E , ( , )

, ( , ) 0,

d d

d d

M M

L x y
w z

M M

L x y
w z

d w z h w c z c

E d w z E h w c z c

µ
= =

= =

 
= − − 

 

 = − − =    

∑∑

∑∑
     (2.30) 

and a variance, 2
2 ,σ  of  

( )

( ) ( )

( ) ( )

2
2
2 2

1 1

2 2
1 1 1 1

2 2
1 1 1 1

, ( , )

, ( , ) , ( , )

, , ( , ) ( , ).

d d

d d d d

d d d d

M M

L x y
w z

M M M M

L x y L x y
w z m n

M M M M

L x y L x y
w z m n

E d w z h w c z c

E d w z h w c z c d m n h m c n c

E d w z E d m n h w c z c h m c n c

σ
= =

= = = =

= = = =

  
= − −  

   
 

= − − − − 
 

= − − − −      

∑∑

∑∑ ∑∑

∑∑∑∑

  (2.31) 

Eq. (2.31) can be simplified using two cases, one when  and/or w m z n≠ ≠  and the other 

when  and  = .w m z n=   Using the Kronecker delta function, ( ), ,w m z nδ − −   

( ) ( )

( )( )

( ) ( )

2
2 2 2

1 1 1 1

2 2
2

1 1

2 2

1 1

, ,

( , ) ( , ) 1 ,

, ( , ) ,

( , ).

d d d d

d d

d d

M M M M

w z m n

x y L x y

M M

L x y
w z

M M

L
w z

E d w z E d m n

h w c z c h m c n c w m z n

E d w z h w c z c w m z n

h w z

σ

δ

δ

σ

= = = =

= =

= =

=       

× − − − − − − −

 + − − − − 

=

∑∑∑∑

∑∑

∑∑

           (2.32) 

Therefore, the standard deviation of the normalized data convolved with the total system 

PSF is  

2
2

1 1

( , ).
d dM M

L
w z

h w zσ σ
= =

= ∑∑                                 (2.33) 

The sufficient statistic for the correlator is then found by dividing Eq. (2.27) by Eq. 

(2.33).  Then the LRT reduces to the following correlation operation normalized in terms 

of the correlator’s signal-to-noise ratio, ,corrSNR   
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( )1

0

2

1 1 1 1

2 2

1 1 1 1

( ( , ) ) ( , ) ( , )
2 .

( , ) ( , )

d d d d

d d d d

M M M M
H

L x y L
w z w z

corr M M M M
H

L L
w z w z

d w z B h w c z c h w z
SNR

h w z h w z

θ

γ
σ σ

= = = =

= = = =

 − − −  >
= =

<

∑∑ ∑∑

∑∑ ∑∑
   (2.34) 

The results of the sufficient statistic are then compared against the selected SNR 

threshold, ,γ   which is set to achieve a desired .FAP   

In the case of the baseline point detector, the PSF is one pixel represented as a 

delta function, ( , ).x yw c z cδ − −   The sufficient statistic for the baseline detector in terms 

of the point detector’s signal-to-noise ratio, ,BaselineSNR  is  

1

0

1 1

2

1 1

( ( , ) ) ( , ) ( ( , ) )

( , )

d d

d d

M M
H

x y
x yw z

Baseline M M
H

w z

d w z B w c z c d c c B
SNR

w z

δ
γ

σ
σ δ

= =

= =

− − − − >
= =

<

∑∑

∑∑
 (2.35) 

and can be compared against the same threshold as the correlator.  The fact that both 

detectors are expressed in terms of SNR and use the same threshold makes the 

comparison of the two detectors possible.  This is because for each pixel being tested the 

detectors will produce a SNR value.  When comparing the two detectors, the detector that 

produces the higher SNR value will have the high performance.  

 

2.4.3 Undersampling and Correlation Detection 

While correlation detectors have better single frame detection performance than 

the point detectors currently used in the SST, adequate PSF spatial sampling can affect 

the probability of detection, ,dP  for the correlator [25, 43].  O’Dell et al.’s paper shows 

the effects of undersampling images on the performance of correlation detectors for the 

optical detection of space objects.  What O’Dell doesn’t describe is how to improve 
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detection performance other than by increasing physical spatial sample rates.  In other 

words, if the image can’t be sampled at its Nyquist frequency, can the aliasing effect be 

mitigated using a modeled PSF?  

To understand the Nyquist sampling in O’Dell’s work, objects are treated as 

incoherent point sources of light and are propagated through an atmosphere causing the 

light to spread.  For the simulations presented, the cutoff frequency,  

 02 ,c
i

rf
zλ

⋅
=

⋅
 (2.36) 

is limited by the atmospheric seeing parameter, 0,r  at a given focal length, iz  and 

wavelength,  λ [31].   The difference between sampling to meet the Rayleigh criteria is 

that a pixel angle, ,R∆  is 

 
0

1.22
R r

λ
∆ = , (2.37) 

and the Nyquist criteria has pixel angle, ,N∆  of  

 
02N r

λ
∆ =

⋅
. (2.38) 

 The curves in Figure 7 (a) and (b) show the key finding of O’Dell’s paper - the 

correlator has a higher dP  when the PSF is properly sampled [43].  When the object 

intensity is centered on a pixel the Rayleigh sampled correlator performance is not as 

drastically degraded as compared to the Nyquist case in Figure 7 (a).  However, when the 

PSF is in the corner of a pixel, the Rayleigh sampled correlator has a significant reduction 

in detection performance as shown in Figure 7 (b).  
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Figure 7. Comparison of aliased and unaliased detector performance for a fixed probability of 
false alarm (a) Nyquist and Rayleigh sampled correlator detection performance with PSF centered 
on a pixel. (b) Nyquist and Rayleigh correlator detection performance with PSF centered on the 
corner of a pixel [43]. 

 

2.5 Conclusions 

The mission of synoptically searching deep space for unknown space objects has 

driven the requirements for wide FOV three mirror telescopes such as the SST and the 

Large Synoptic Survey Telescope (LSST) [1, 21].  The tertiary mirror makes these 

complex telescopes considerably more difficult to align and focus than traditional two 

mirror telescopes driving the need of better phase retrieval methods [21, 44].   To 

compensate for the unavoidable blurring of images from the atmosphere and telescope 

aberrations, larger pixels (or binned pixels) are used to increase SNR with the 

unavoidable consequence of causing undersampling of the data [18, 43]. Detection can be 

improved by binning pixels to add together the spread signal with the SST’s current 

detection algorithm.  However, this approach is not ideal because it includes the addition 

of read noise from each pixel.  Also, the PSF may not be centered on a pixel so that the 

irradiance will be detected across multiple binned pixels.  Therefore, a detection 

(a) (b)
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algorithm is needed that accounts for the PSF that spans more than one pixel and spatially 

filters the image with a model of the PSF to perform detection.  Review of current 

literature, summarized in the remainder of this section, has revealed that existing phase 

retrieval algorithms and detectors have limitations that ultimately limit the optical 

detection of space objects. 

Phase retrieval of Zernike coefficients has been successfully used to align the SST 

in good atmospheric conditions ( )0 10 cmr ≥  by defocusing the telescope, but techniques 

that work in less ideal conditions and in-focus are needed to maximize telescope 

performance [17].  A phase retrieval technique that works in-focus with any atmospheric 

conditions will provide the necessary aberration information from the SST’s standard 

imagery data for focus and alignment.  This can be accomplished without going through 

the complex procedure of moving the secondary and tertiary mirrors to defocus the 

telescope [18].  This would enable diagnostic monitoring of the telescope in order to 

maintain focus and alignment with standard imagery data.  However, the current 

documented phase retrieval methods of curvature sensing, the Gerchberg-Saxton 

algorithm and least squares fitting are limited in their ability to accurately estimate 

Zernike coefficients with focused data [33, 34, 35, 45].  Thus, the new phase retrieval 

methods (discussed in Chapters III and V) that work in-focus with poor atmospheric 

conditions are desirable.   In addition, the phase retrieval algorithm described in Chapter 

III has already proven useful in estimating PSFs for inclusion in a new detection strategy 

for the SST covered in Chapter IV. 

The development of a phase retrieval algorithm that works in-focus would be 

useful not only for the focus and alignment of ground based telescopes, but also for space 
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based telescopes like the James Webb Space Telescope (JWST) projected to launch in 

2018 [46]. Currently, NASA plans to use a phase retrieval algorithm called the hybrid 

diversity algorithm (HDA) that is based on the Gerchberg-Saxton algorithm with another 

process to perform phase-unwraping [36, 45, 47].  The HDA requires phase diversity 

similar to the LM least squares method used for characterizing the HST [32].  The 

problem of generating phase diversity with defocus was overcome in the HST by moving 

the focal plane [32], however due to JWST three mirror design and segmented primary 

mirror, defocusing is not as simple [44].  To overcome that challenge, the JWST has 

additional optics on two separate wheels that can be rotated into the optical path to 

generate defocus [47, 48].  The JWST could potentially remove the requirements for 

these additional optical elements and reduce overall program risk by using the phase 

retrieval algorithm discussed in Chapter V.  

In addition to sub-optimal phase retrieval methods, the SST’s current detection 

performance is limited due to the design of its baseline detector [25].  A correlator, 

similar to the one developed for pan-STARRS, could improve the performance of the 

SST over the baseline detector, but it is ultimately limited by the SST’s undersampled 

data [16, 41, 43].  Other correlation methods for the detection of space objects have been 

developed as discussed previously in this chapter.  Those methods work with objects that 

move across multiple pixels during a single exposure causing streaks, whereas deep space 

objects imaged by the SST are effectively point sources due to short integration times 

[23, 24].  Each of the aforementioned detectors are based on a Gaussian parametric model 

for the noise; however, one other detector discussed in literature was based on a Poisson 

distribution of the noise [33].  The MHT is derived from a Gaussian LRT in Chapter IV 
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and works with point source data to improve the detection performance of the SST over 

both the correlator and its baseline detector by compensating for both blurring and 

undersampled data.  The following three chapters cover the research accomplished to 

improve both phase retrieval and detection performance of the SST, but should also be 

extensible to other astronomical telescopes.    
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III. Phase Retrieval with a Long Exposure Atmosphere 
Equation Section 3 

One key image processing technique that improves the SST’s detection is 

modeling the telescope’s wavefront error with Zernike polynomials.  Estimates of the 

Zernike polynomial coefficients produced by phase retrieval are used to better focus and 

align the telescope immediately improving SNR and thus the detection performance [17].  

In addition, the same coefficients are used to model the telescope’s point spread function 

(PSF), which can be used to improve the SST’s detection sensitivity using the multi-

hypothesis test discussed in Chapter IV.  

The critical technology that enables the SST’s 6 deg wide field-of-view (FOV) 

camera (shown in Figure 8) is the unique set of curved charged coupled device (CCD) 

arrays.  The set of 12 separate curved CCD arrays are tiled together in a 6 by 2 mosaic 

that form a surface with a 5 m radius of curvature that alleviates some of the aberrations 

inherent to the optical design.  During the design process, a choice was made to maintain 

the wide FOV of the telescope with the larger format (12288 by 8192) mosaic detector 

and a mechanical shutter rather than a smaller format mosaic detector in a frame transfer 

camera.  Since the current camera does not have a frame transfer capability, a high speed 

shutter was developed for the camera with a minimum exposure time, τ, of 25 ms.  This is 

still considerably longer than the τ < 10 ms typically associated with a short exposure 

image [20].   
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  Figure 8.  The SST’s 6 deg wide field-of-view camera and high speed mechanical shutter  
  

One of the main challenges in optimizing the SST’s performance is to reduce the 

point spread function (PSF) through focus and alignment.  The pixels in the CCD are 15 

µm.  However, the pixels can be two by two binned to mitigate the degradation in 

detection sensitivity of the point detector that occurs due to atmospheric blurring and 

telescope aberrations.  Figure 9 shows the variations of full width half maximum 

(FWHM) blur spot in terms of 30 µm binned pixels over three months leading up to the 

final alignment of the telescope.   The FWHM is a measurement of the width across the 

irradiance pattern produced by the telescope’s image of a point source at half the 

maximum value.   
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Figure 9.  Variations in the Full Width Half Maximum (FWHM) of the SST’s Point Spread 
Function (PSF) measured by 2 by 2 binned 15 µm pixels. (provided by MIT/LL) 

 

Ideally, the PSF FWHM would be within one 30 µm binned pixel.  Reducing the 

PSF size is possible by accurately determining the amount of focus error and other 

aberrations in the image of a calibration star, then adjusting the focus and alignment to 

reduce the blur spot size.  However, to find unbiased estimates of the telescope 

aberrations from the star image, the atmospheric effects must be accounted for in the 

phase retrieval technique.  As mentioned in Chapter II, the engineers only aligned the 

optics on nights with seeing greater than 10 cm.  With future SST sites being surveyed in 

Australia, where there is less ideal atmospheric seeing conditions than in New Mexico, 

there will be a need to correctly estimate the Zernike coefficients in poor seeing 

conditions.  This is one of the reasons that there is a need for improved phase retrieval 

techniques.   

 



38 
 

3.1 Telescope Model 

The telescope model introduced in the background chapter and used for this 

analysis follows a similar model employed for phase retrieval of the HST aberrations 

before and after correction [32].  The SST is considered a linear shift invariant system 

with the impulse response of the system being the PSF.  The light propagating from the 

distance point source, δ(x), is assumed to be temporally incoherent in the image plane 

with coordinates, x.  The parameters used in the telescope model are listed in Table 1. 

 

                                                   Table 1. Telescope Model Parameters 
 

Parameter Value 
 

Center Wavelength 500 nm 
 

Telescope Pupil/Obscuration Diameter 3.5 m / 1.8 m 
 

Telescope Effective Focal Length 3.5 m 
 

CCD Pixel Pitch 15 µm 
 

Star Irradiance per Frame ~104 photons 
 

Background Irradiance per Frame 300 photons 

   

 

The SST’s pupil transmittance function, A(u, v), is defined by its annular aperture 

shown in Figure 10 (a), where  and u v  are coordinates in the pupil plane.  Wavefront 

error caused by defocus is introduced into the pupil function using the Zernike 

polynomial for defocus, 4( , ),u vφ  [31],    

 2 2
4 ( , ) 3.464 ( ) 1.732.u v u vφ = ⋅ + −  (3.1) 
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The amount of focus error is captured by scaling 4( , )u vφ  with a Zernike coefficient for 

defocus, 4.Z   This product is used to express the wavefront error, W(u, v), as   

 4 4( , ) ( , ).W u v Z u vφ= ⋅  (3.2) 

An image of 4( , )u vφ scaled by a 25 wave coefficient is shown in Figure 10 (b).  

Compressing the notation from two dimensions (2-D) to one (1-D) for simplified 

presentation, the aberrations are then represented with the pupil plane coordinates, 1,u by 

the generalized pupil function, ( )1 ,uP  as 

 ( ) ( ) ( )1 1 1exp .u A u j W u= ⋅  P  (3.3) 

Then the telescope’s PSF, ( ),opth m  is computed as [3]  

 ( ) 1

1

2

2
1( ) ,j mu

opt
u

h m u e π= ∑P  (3.4) 

where m is a pixel coordinate in the detector plane. An image of ( )opth m  with 25 waves of 

defocus is shown in Figure 10 (c).  The large amount of defocus causes the PSF to have 

an annular shape. 

 

Figure 10. Telescope Model (a) Pupil function used to model the SST (b) Zernike polynomial for 
defocus with 4 25 wavesZ =  (c) Telescopes PSF with 4 25 wavesZ =  of focus error. 
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For a more complete model of the telescope, the effect of the finite square pixels, 

a  = 15 µm, is included in the PSF where the transfer function for the pixels, ( )2 ,pixel uH  

and telescope, ( )2 ,opt uH  respectively are represented as the following discrete Fourier 

transforms,  ,F   

 ( ) [ ]2 ( ) ,  andpixel u rect a m= ⋅H F  (3.5) 

 ( )2 ( ) ,opt optu h m=   H F  (3.6) 

where 2u is the spatial frequency.  Then the PSF for the telescope, ( ),telescopeh m  can be 

computed via the transfer functions as 

 ( ) ( )1
2 2( ) .telescope opt pixelh m u u−  = ⋅ F H H  (3.7) 

Bright star images observed by the SST have been measured to be shot noise dominated 

(see Appendix), so the image data, ( ),d m  is considered to be Poisson and has a mean 

value that is equal to the irradiance of light in that pixel [32] 

 ( ) ( ).E d m i m=    (3.8) 

The model for the star irradiance centered on the optical axis is  

 1

1

( ) ( ) ( )

( ) .

telescope telescope
x

telescope

i m x h m x B

h m B

θ δ

θ

= ⋅ ⋅ − +

= ⋅ +

∑  (3.9) 

It includes additional terms to account for the background light, B, and the total photons 

emitted from the star per integration time, 1.θ   Assuming statistical independence 

between pixels, the joint distribution of the image data is represented by the Poisson 

probability mass function and details of the choice of this PMF can be found in  the 

Appendix,   
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( )( )

.
( )

( )
( )!

telescopei m d m
telescope

m m

e i m
P d m

d m

−

  
⋅

=∏ ∏  (3.10) 

The associated log likelihood, ( )4 ,L Z  equation is   

 
( ) [ ]

{ }
4 ln ( )

( ) ( ) ln ( ) ln ( )! .
m

telescope telescope
m

L Z P d m

i m d m i m d m

 =  
 

= − + ⋅ −

∏

∑
 (3.11) 

 

3.2 Cramer-Rao Lower Bounds (CRLB) for Variance 

 The CRLB for variance presented in this section was derived in order to evaluate 

the performance of the joint estimator (i.e. phase retrieval) for the Zernike coefficients 

and the atmospheric seeing parameter.  The CRLB for estimates of Zernike coefficients 

was previously derived for evaluating the phase retrieval performance on the HST [32].  

The difference between the SST and the HST is that the HST does not have to image 

through the earth’s atmosphere.  The CRLB herein provides a theoretical lower limit of 

variance for unbiased estimates of the Zernike coefficient for defocus, 4
ˆ ,Z  and the 

atmospheric seeing parameter, 0.r   Simulations presented in this chapter demonstrate that 

phase retrieval using a least squares estimator produces unbiased estimates of those two 

parameters [32].   

The bounds in Figure 12 illustrate that standard deviations of 4Ẑ  on the order of 

10-1 waves are possible at practical light levels even in the presence of long exposure 

atmosphere.  To determine the CRLB for estimates of the Zernike coefficient for defocus 

the Fisher information, 4( ),J Z  is computed via the following calculation [38], 
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( )2

4
4 2

4

( ) . 
L Z

J Z E
Z

 ∂
= −  ∂   (3.12) 

In this equation the CRLB for the variance of  4Ẑ  is defined as 

 ( ) 1
4 4

ˆvar( ) .Z J Z −≥  (3.13) 

The first and second derivative of the log likelihood function, Eq. (3.11), respectively are 

 
( ) ( ) ( )4 1

1
4 4

, and
( )

telescope

m telescope

h mL Z d m
Z i m Z

θ
θ

  ∂∂ ⋅
= − ∂ ∂  

∑  (3.14) 

 ( ) ( ) ( ) ( ) ( ) 222
4 1 1

12 2 2
4 4 4

.
( ) ( )

telescope telescope

m telescope telescope

h m h mL Z d m d m
Z i m Z i m Z

θ θ
θ

  ∂ ∂ ∂ ⋅
= − −   ∂ ∂ ∂    

∑  (3.15) 

The resulting Fisher information is 

 ( ) ( )
( )

22
4 1

4 2
4 4

( )telescope

m telescope

h mL Z
J Z E

Z i m Z
θ  ∂ ∂  

= − =     ∂ ∂      
∑ . (3.16) 

The derivative of the PSF with respect defocus is 

 ( ) ( ) ( ) ( ) ( )
*

*1
2

4 4 4

( )
.telescope

pixel

h m H m H m
H m H m u

Z Z Z
−

  ∂ ∂ ∂ = ⋅ + ⋅ ⋅  ∂ ∂ ∂    
F F H  (3.17)  

The derivative of the wavefront in the detector plane with respect to (w.r.t) 4Z is     

 
( ) ( ) ( ) ( )

( ) ( ) ( ){ }

4 4 1 1

1

4 4 1

2
4 1 1

4

4 1 1 .

jZ u j mu

u

jZ u

H m
j u A u e e

Z

j u A u e

φ π

φ

φ

φ

∂
= ⋅

∂

= ⋅

∑

F

  (3.18) 

Thus, recalling that for arbitrary variables a and b;  

( ) ( ) ( )2 2 Imj a jb a jb b a jb+ − − = − ⋅ = − ⋅ +    

leading to the first derivative of the PSF to be  
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 ( ) ( ) ( ) ( ){ } ( )( )4 4 3 *1
4 3 3 2

4

( )
2 Im ,jZ utelescope

pixel

h m
u A u e H m u

Z
φφ−∂  = − ⋅ ⋅ ⋅ ∂

F F F H (3.19) 

where 3u represents the pupil coordinates.  The resulting Fisher information for the 

optical system containing focus error is  

( ) ( ) ( ) ( ) ( ){ }( ) ( ){ }4 4 3

4

2
*11

4 4 3 3 24 Im .jZ u
pixel

m Z

J Z u A u e H m u
i

φθ φ−
    = ⋅ ⋅ ⋅ ⋅        

∑ F F F H (3.20) 

As discussed in the background chapter, because the SST uses a shutter with an 

integration time greater than 25 ms, an accepted model for that atmosphere is a long-

exposure atmospheric transfer function, which is given by Goodman as [20],  

 ( )
5

3
2

2
0

exp 3.44 .atm
f uu
r

λ  ⋅ ⋅ = −  
   

H  (3.21) 

In Eq. (3.21) λ   is the mean wavelength, f  is the telescope focal length, and 0r  is the 

atmospheric seeing parameter.  The long exposure PSF is then computed as,    

 ( ) ( ) ( )1
2 2 2( ) .long opt pixel atmh m u u u−  = ⋅ ⋅ F H H H  (3.22) 

Samples of the three transfer functions are shown in Figure 11 (a-c) to illustrate 

how the pixels and atmosphere reduce spatial frequency content of the diffraction limited 

telescope’s optical transfer function.  The horizontal axis is shown in terms of the spatial 

frequency, 2 ,u  divided by the cutoff frequency, 0,u  for the annular telescope pupil 

function.  Reducing the spatial frequency of the optical system causes the PSF to broaden 

due to the Fourier transform relationship.     As the focus error increases, ( )2opt uH  

begins to increasingly limit the spatial resolution of the telescope.  
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Figure 11. System model transfer function examples. (a) Telescope models optical transfer 
function (OTF) with 4 0.Z =   (b) 15 µm pixels transfer function. (c) Atmospheric transfer 
function with 0 8 cm.r =   
 

By including the effects of the atmosphere in the PSF, the image intensity model in Eq. 

(3.9) becomes  

 1( ) ( ) ( ) .long long
x

i m x h m x Bθ δ= − +∑  (3.23) 

The elements of the Fisher information matrix, I,  

 
( ) ( )

( ) ( )
4 4 0

4 0 0

,
,

J Z J Z r
I

J Z r J r
 

=  
 

 (3.24)  

are calculated in order to determine the CRLB for variance of 4Ẑ  in the presence of an 

average atmosphere.  Using the log likelihood function in Eq. (3.11) and taking the 

second derivative of Eq. (3.14)  w.r.t. 0 4 & ,r Z     

 
( ) ( ) ( ) ( ) ( )22

4 0 1 1
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4 0 4 0 4 0
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,

( ) ( )
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m long long

h m h m h mL Z r d m d m
Z r i m Z r i m Z r

θ θ
θ

  ∂ ∂ ∂ ∂ ⋅ ⋅  
= − −     ∂ ∂ ∂ ∂ ∂ ∂     

∑ (3.25) 

 
( ) ( ) ( ) ( ) 222

4 0 1 1
12 2 2

0 0 0

( ),
,  and

( ) ( )
long long

m long long

h m h mL Z r d m d m
r i m r i m r

θ θ
θ

  ∂ ∂∂ ⋅ ⋅  
= − −   ∂ ∂ ∂    

∑      (3.26) 
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( ) ( ) ( ) ( ) ( )22

4 0 1 1
12 2 2 2

4 4 4

,
.

( ) ( )
long long

m long long

h m h mL Z r d m d m
Z i m Z i m Z

θ θ
θ

  ∂ ∂ ∂ ⋅ ⋅
= − −   ∂ ∂ ∂    

∑          (3.27) 

Because ( ) ( )longE d m i m=    the elements of the Fisher information matrix are                                  

 ( ) ( )2
4 0 1

4 0
4 0 4 0

( ) ( ),
, ,long long

m long

h m h mL Z r
J Z r E

Z r i z r
θ  ∂ ∂ ∂   

= − =       ∂ ∂ ∂ ∂      
∑  (3.28) 
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h mL Z
J r E
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θ  ∂ ∂  

= − =      ∂ ∂    
∑  (3.29) 
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J Z E
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θ  ∂ ∂  

= − =      ∂ ∂    
∑  (3.30) 

Then the derivatives of the PSF are 
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(3.31)   

The CRLB is computed by inverting the Fisher information matrix 

 4 4 0 1

4 0 0

ˆ ˆvar( ) cov( , )
.

ˆcov( , ) var( )

Z Z r
I

Z r r
−

 
≥ 

  
 (3.32) 

The resulting bound of the standard deviation for estimates of the Zernike 

coefficient for defocus, ( )4 0,LB Z rσ  are plotted in Figure 12 for cases with and without an 

average atmosphere present.  Atmospheric turbulence increases the bound and as 0r  

decreases, the effect of the atmosphere on the bound increases because a decreasing 0r

represents a more turbulent atmosphere.  In addition, as 4Z  decreases the lower bound 
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increases.  Therefore, estimation of 4Z  should become more inaccurate as the amount of 

defocus decreases.  

 

 

Figure 12. A plot of the CRLB for the standard deviation of the Zernike coefficient for defocus, 
( )4 0, ,LB Z rσ  for a range of 4Z values. The standard deviations are shown for cases with no 

atmosphere in the model and increasing atmospheric seeing by changing 0.r   
 

3.3 Parameter Estimation 

    The method of least squares (LS) estimation was used to estimate the Zernike 

coefficient for defocus, 4
ˆ ,Z  from simulated star data.  The LS method is used because of 

computer precision challenges encountered in the maximum likelihood estimation 

approach, particularly in evaluating the natural logarithm.  The primary contribution 

comes from to the large background levels inside the log-likelihood function.  To 

accurately estimate the defocus parameter from the simulated star data, an estimate of the 
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object’s irradiance, 1̂,θ  must be calculated from the data by taking the derivative of Eqs. 

(3.34) and (3.35) then setting them equal to zero to get the generalized function 

 
[ ] ( )

( )1 2

( )
ˆ .m

m

d m B h m

h m
θ

− ⋅
=

∑
∑

 (3.33) 

The intensity models from Eqs. (3.9) and (3.23) are used to define the elements of 

the sum of squares matrices for the telescope model without an atmosphere, 

( )4 ,telescopeQ Z  and with an atmosphere, ( )4 0, .longQ Z r  The elements of each matrix are 

calculated respectively as 

 ( ) ( )
2

4 4 1̂, ( ) ( ) andtelescope telescope telescope
m x

Q Z d m Z x h x m Bθ δ = − − −  
∑ ∑  (3.34)  

 ( )
2

4 0 4 0 1̂, ( , , ) ( ) ( )  ,long long long
m x

Q Z r d m Z r x h x m Bθ δ = − − −  
∑ ∑  (3.35) 

where, 4 4 0( , ) and ( , , )telescope longd m Z d m Z r are data from a simulated star and correspond to 

a grid formed of possible 4Z & 0r  values.  For the single parameter estimate of 4,Z  a 

vector of values of telescopeQ  are formed with each element in the vector corresponding to 

the following range of defocus parameters, 4 0,.25,...,29.75,30Z =  waves.  For the joint 

estimation 4Z  and 0r ,  a matrix of values of longQ  are computed with input parameters 

from the sets 4 0,.25,...,29.75,30 wavesZ = 0and 2,2.1,...,9.9,10 cm.r =  Then 4Ẑ  is 

determined without accounting for the atmosphere by the single parameter estimate,  

 ( )
4

4
ˆ arg min ,telescope

Z
Z Q=  (3.36) 
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or by accounting for the atmosphere with the joint estimator 

 ( )
4 0

4

,0

ˆ
arg min .

ˆ Long
Z r

Z Q
r

 
= 

 
 (3.37) 

By finding 4Ẑ  for multiple image frames of simulated star data, the results are then used 

to determine the sample mean and variance for the LS estimator. 

 

3.4 Phase Retrieval Simulations 

 Simulated star data, ( ) ,longd m  viewed through a long exposure atmosphere and 

defocused telescope are modeled in order to evaluate the performance of the LS phase 

retrieval technique.  Stars are simulated as system impulses, δ(x), and then the effects of 

the atmosphere, telescope, defocus, pixilation, background light and star intensity are 

introduced using Eq. (3.23).  The Nyquist sampled images of a star with and without 

atmospheric effects are shown in Figure 13. (a) & (b) respectively.  The pixilated images 

of those same stars are picture in Figure 13. (c) & (d).  Shot noise is simulated in the star 

data using a Poisson random number generator.    
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Figure 13. Simulated stars (a) simulated analog image of a star with Z4 = 18 waves and no 
atmosphere. (b) Simulated analog image of a star with Z4 = 18 waves and an average atmosphere 
where r0 = 8 cm (c) Simulated digital image of a star with Z4 = 18 waves and no atmosphere. (d) 
Simulated digital image of a star with Z4 = 18 waves and an average atmosphere where r0 = 8 cm.  

To produce the plot in Figure 14, ( )longd m  is generated without shot noise and 

with focus errors ranging from 3-24 waves in order to evaluate the LS estimators biases.  

Estimates of defocus using Eq. (3.36) are made on simulated stars with and without an 

average atmosphere present.  The graph shows that when the simulated star data does not 

have an average atmosphere, the single parameter estimator is unbiased.  Also, when the 

average atmosphere is introduced to the data the single parameter estimator has a defocus 

dependent bias.  In contrast, the results of the joint estimator, Eq. (3.37), determined from 
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the same simulated star data with an average atmosphere present does not have a 

significant bias.   

  

 

Figure 14.  Estimated defocus parameter determined from simulated star data with no noise 
present to investigate phase retrieval biases. The blue X marks the single parameter estimate for 
defocus without an atmosphere present in the simulated star data. The green circles are the single 
parameter estimates of Z4 where r0 = 8 cm in the simulated star data. The red boxes are the joint 
parameter estimate of Z4 where r0 = 8 cm in the simulated star data. 
 

To further evaluate the phase retrieval performance of the LS joint estimator, shot 

noise is added ( )longd m to form multiple frames of simulated star data.  Then the 

estimator’s results mean, 4
ˆ ,E Z    and standard deviation, ,Sσ  for each defocus value are 

plotted in Figure 15.  As the amount of defocus in the simulated stars decreases the 

standard deviation of the estimates increases significantly due to the narrowing of the 

PSF, measured as the FWHM on the right hand side of the plot.  As the PSF narrows, less 
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of the shape of the PSF can be discerned from the star images increasing the standard 

deviation of estimates of the defocus parameter.  

 

 

Figure 15. The joint parameter estimates from the simulated stars with shot noise. 4
ˆE Z    and sσ   

are represented as blue dots and error bars then plotted as a function of the simulated defocus.  
The FWHM of the PSFs are plotted with the green asterisks as a function of the same simulated 
defocus.  
 

 In Figure 16, the same sample standard deviation, ,sσ  from the joint parameter 

estimates in Figure 15 are plotted along with their associated CRLB, ( )4 0, .LB Z rσ   The 

( )4 0,LB Z rσ  is not achieved by ,sσ but the standard deviation is below a wavelength until 

the blur spot becomes too small.  Overall the joint estimator performs well for phase 

retrieval of the defocus and seeing parameters because the estimator is unbiased and its 

variance is manageable since many frames of data can be recorded to reduce the variance 

to the desired range. 
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Figure 16.  Both the sample standard deviation, ,sσ  of the joint parameter estimates (blue dots) 
and the CRLB, ( )4 0, ,LB Z rσ  (red stars) are plotted as a function of simulated star defocus. 
 

3.5 Laboratory Demonstration 

 A demonstration, illustrated in Figure 17, was conducted to show that the LS 

estimator for 4Z  and 0r  works beyond the pristine conditions of simulation.  The setup 

includes a point source created with a red LED and a pin hole to create a point source.  

The light emanating from the pin hole can be considered a spherical wave.  The light then 

propagates to the 2 mm aperture of an intentionally defocused camera. From the single 

lens forming the aperture, the light is imaged onto a CCD array with a pixel pitch of 16 

µm.  The data is recorded and the joint estimate of Z4 and r0 is made using the LS 

estimator.  The same setup is used for the second half of the demonstration, only this time 

a thermal source is placed in front of the aperture to simulate a turbulent atmosphere.  
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The data is recorded and again the joint estimate of Z4 and r0 is made using the LS 

estimator.   

  The demonstration results are shown at the bottom of Figure 17.  On the lower 

left is the image of the point source without the thermal source.  The LS estimate of that 

blur spot has a 4
ˆ .7895 wavesZ =  and an 0 2.27 cm.r =   Then the blur spot on the lower 

right is recorded with the thermal source on and the estimates changed to a 

4
ˆ .4737 wavesZ =  and a 0 .018 cm.r =   While truth data for the defocus and the seeing 

parameters was not available for this demonstration, the values are consist with the 

observed blurring of the point source image.  The results from laboratory data are an 

indication that the LS estimator is working.  With the heat source on, 0r  drops below the 

diameter of the aperture causing a measurable blur in the image of the point source as 

anticipated.  

 

Figure 17.  Phase retrieval demonstration setup and results 
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3.6 Joint Estimation of Spherical Error, Defocus, and Atmospheric Seeing  

 Ray tracing analysis of the SST optical design predicts it to have spherical error.  

Therefore, it is important to investigate the effects of the presence of spherical error when 

estimating the Zernike coefficient for defocus.  Once again stars were simulated, however 

this time the Zernike coefficient for spherical error, 11,Z  was included in the simulated 

star data.   Then estimates for 11Z were made by extending the joint estimator to 

 
11, 4 0

0

4
,

11

ˆ
ˆ arg min .
ˆ

long
Z Z r

r

Z Q

Z

 
   =     
 

 (3.38) 

 The plot in Figure 18 shows that jointly estimating the atmospheric seeing 

parameter plus the Zernike coefficients for spherical and defocus produces an unbiased 

estimate when those aberrations are present in the optical system.  However, the omission 

of either spherical or defocus parameters from the estimate produces a bias estimate for 

the parameter of interest. 
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Figure 18. Defocus and spherical error estimation results. Estimated defocus and spherical error 
parameters determined from simulated star data that has both defocus and spherical aberrations 
through an average atmosphere with no noise present. The red X marks the joint 4 11 0,  ,  Z Z r   
parameter estimate for defocus. The green asterisk are the estimates of 4Z  using only the joint 

4 0,  Z r  estimator. The light blue box marks the joint 4 11 0,  ,  Z Z r  parameter estimate for spherical 
error. The blue circles are the estimates of 11Z  using only the joint 4 0,  Z r  estimator.  The 
estimator achieves the correct value when all three parameters are jointly estimated. 
 

3.7 Conclusions 

Based on the simulations discussed in this chapter, phase retrieval of the 

atmospheric seeing parameter and Zernike coefficient for defocus can be accurately 

determined as long as they are jointly estimated.  The long exposure atmosphere can 

affect estimation of 4Z  and 11Z  thus demonstrating the need to account for 0r  when 

estimating the SST’s aberrations.   That being said, ideally an estimator that includes 
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more Zernike terms would be preferable, so that the optical system can be better 

optimized and the PSF better characterized.  To that end, Chapter V on short exposure 

imagery demonstrates a phase retrieval method of more Zernike coefficients with a short 

exposure atmosphere.  Unfortunately, the grid search method is too computationally 

burdensome for the estimation of more coefficients and so a direct search method is used. 

In the next chapter, the grid search method presented in this chapter is used for 

phase retrieval of the defocus and seeing parameters.  This method was possible because 

the SST’s other aberrations have been previously estimated using the Donut software, so 

that they could be included in the PSF model to avoid biasing of the seeing and defocus 

parameter estimates.  The SST’s aberrations were phase retrieved with Donut within days 

of the collection of experimental data so that the PSF was relatively current.  By 

including the other parameters in the PSF model and phase retrieving the atmospheric 

seeing parameter and defocus parameter that change on a temporal basis, an up-to-date 

model of the PSF is formed.  The PSF model retrieved using this combined parameter 

estimation technique is used in the MHT and has an advantage over using a star in the 

FOV for the PSF because the modeled PSF can be shifted without aliasing. However, 

since the PSF may change over time it would be preferable if all the Zernike coefficients 

used in the PSF model could be characterized from focused SST data as demonstrated in 

Chapter V.   
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IV. Improving Detection using Multi-hypothesis Testing 
Equation Section (Next) 

The mission requirements for the SST differ from typical astronomical telescopes.   

The SST is designed to scan deep space to detect unknown space objects and correlate 

their orbits rather than dwell on stellar objects over relatively long periods of time in 

order to characterize them [3].  In this sense, the SST is a precursor to other wide field of 

view synoptic search programs like the LSST.  Two trajectory matched filter approaches 

for asteroid detection are described in [23] and [24]; however, these particular approaches 

are not further investigated in this work.  This chapter discuses match filtering the spatial 

shape of the object in a single observation similar to a correlator or the multi-hypothesis 

test (MHT).  

 

4.1 Introduction 

Currently the SST uses an algorithm developed from a binary hypothesis test 

(BHT) to detect space objects in a single image [25].  The two hypotheses are 1) the null 

hypothesis that a space object’s image is not in a pixel (H0) and 2) the alternative 

hypothesis that the image is in a pixel (H1).  In contrast, a MHT is proposed for single 

frame detection that selects from the hypotheses that the image is in the center, a corner, 

or a side of a pixel (H1-H9) in addition to H0.   Although the use of more hypotheses might 

increase the detection performance of this scheme, a finite number of hypotheses must be 

chosen in order to make the use of the test numerically tractable.  The results 

demonstrated using nine alternative positional hypotheses serve to demonstrate the utility 

of the MHT over a BHT, but do not necessarily represent the optimal performance 

achievable by a MHT.  Since the SST sensor is dominated by readout noise rather than 
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shot noise at low light levels these tests consider the noise to be Gaussian; however, 

another method of BHT developed by Pohlig has been derived using a Poisson noise 

distribution, which is not used for comparison in this study [42]. 

The experiment conducted as part of this research is designed to determine which 

type of algorithm is best at detecting dim, unresolvable objects in space on a single frame 

basis.  Since single frame detection decisions are typically used as input to multi-frame 

detection and tracking algorithms, a superior single frame detector will enhance the 

performance of any synoptic search telescope looking for NEAs or space debris using 

this three frame coincidence approach [25].  In order to perform this study, we chose to 

observe a satellite in GEO that is gradually going into eclipse behind the earth.  In this 

scenario, the unresolvable satellite body experiences an ever decreasing amount of solar 

illumination, providing a range of intensity values over which to test the performance of 

different algorithms.  Since the presence and location of the satellite is simple to establish 

when it is brightly lit, all detection algorithms will successfully detect the object before it 

begins to go into eclipse.  The telescope is pointed directly at the satellite and then 

observes it as it goes into the shadow of the earth.  Because the presence of the object is 

known (and further verified when it emerges from the eclipse) the performance of the 

different detection algorithms can be ascertained in a controlled environment.  Also, 

because the object is in geosynchronous orbit, it stays relatively stationary in the sky, thus 

the object requires practically no tracking motion from the telescope motors.  With the 

object location relatively fixed, different detection algorithms are tested using the 

observations of the dimming satellite.  The detection algorithm that successfully reports 

the presence most consistently through the eclipse period represents the superior 
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algorithm.  This method of testing detection algorithms is far superior to performing 

algorithm tests against unknown objects that may or may not actually exist, which 

precludes the possibility of making a firm conclusion as to which algorithm is actually 

detecting an object with a higher success rate versus a detector that produces more false 

detections. 

  Two types of BHTs are compared with the MHT, one is the baseline point 

detector used by the SST and the other is a matched filter technique (i.e. correlation 

detector) similar to that used by the Pan-STARRS program [41].  The advantage of a 

MHT is gained in part by mitigating the aliasing caused by the undersampled SST images 

[43].  The sufficient statistics for both the BHT and MHT are derived in terms of signal-

to-noise ratio (SNR) [25, 38].  The hypothesis that maximizes SNR while simultaneously 

increasing the probability of detection (Pd) is chosen, thereby providing sub-pixel 

position information on the image location and increasing Pd over the BHTs.    

 The comparison of the different hypothesis testing methods on the basis of 

probability of detection and processing requirements is made using data collected from 

the experiment described in the next section.  A modeled PSF is generated using a phase 

retrieval technique presented in Section 4.4 and then it is dithered to create the MHT.  

This PSF model is utilized because it has been proven and documented to work with the 

SST in the past [17].  In Section 4.6 a comparison of a MHT to the BHTs is conducted to 

illustrate the advantages of the MHT as well as its additional computational burden. Then 

at the end of Section 4.6, a derivation shows that the SNR results of the MHT are linearly 

related to the LS estimates of point source irradiance which improves photometry. 
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4.2  The SST Experimental Description 

 As stated in the introduction, the purpose of this experiment is not to find a new 

object in space using the SST, but to instead run different detection algorithms on data 

containing a very dim, but known object so that the relative performance of different 

detection algorithms can be compared in a controlled environment.  The experimental 

method provides a data set that is used to form a clearly supportable conclusion as to 

what algorithm should be used to help detect dim objects in space.  In essence, you 

cannot measure the probability of detection for a system without knowing with certainty 

that an object is present to detect.  In addition to the experimental description, a basic 

overview of the SST’s design and current detection strategy are covered. 

 

4.2.1 Experimental Setup and Process Overview 

The experiment was conducted by imaging a GEO communications satellite, 

ANIK-F1, with the SST in a test mode as the satellite went into and out of eclipse during 

the 2012 vernal equinox as illustrated in Figure 19.  It was important to conduct the 

experiment near the equinox because GEO satellites only eclipse during that period of the 

solar cycle. 



61 
 

 

                                          Figure 19. Eclipse experiment overview [41, 42].  
 

There are many cataloged dim astronomical objects which could be used to 

compare detection algorithm performance, but by imaging eclipsing GEO satellites, the 

experimental observations capture both the effect of the irradiance division across pixels 

that arises from objects moving across the FOV of the telescope and the decreasing 

irradiance levels of the satellites as they enter into eclipse.  The irradiance levels decrease 

as the satellites move through the penumbra and into the umbra as illustrated by the light 

curve produced from data on ANIK-F1 using the U.S Naval Observatory’s (USNO) 1 m 

telescope and plotted in the lower right hand corner of Figure 19.  The roll off of ANIK-

F1’s irradiance during eclipse was first documented in a series of experiments conducted 

by USNO to record the glint of GEO satellites shortly before eclipse [50].   

The first stage in the experiment is the collection of the raw data.  On each night 

of the experiment, images of the night sky containing ANIK-F1 were collected using 

100ms exposures at a rate of 8 frames per second.  The telescope was pointed so that 

Sunlight Eclipsed GEO Satellite Observing Telescope

Region of 
interest

Light curve for eclipsing 
Anik_F1 (12Oct11) – US Naval Observatory 
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ANIK-F1 was centered in the field-of-view near the time right before the eclipse.  The 

orbital elements of the satellite were entered into the SST’s tracking system, so that the 

SST could be programmed to follow the satellite through the eclipse.  This required very 

little tracking movement from the motors as the object being in GEO orbit appears to be 

stationary in the sky at approximately the same position throughout the data collection.  

As predicted on many nights of the eclipse, the satellite became too dim to detect with the 

SST’s existing detection software (described in the next section).  Once the data was 

collected it was recorded and provided to the algorithm test team at AFIT for post-

processing. 

The next step in the experiment was the pre-processing phase.  The raw 6144 by 

4096 pixel SST image data was reduced to a more manageable data set involving only 

200 by 200 pixels around ANIK-F1.  This allowed for more efficient use of memory 

resources within the computer, while providing a sufficiently large field of view to be 

certain the satellite was fully contained in the reduced frame as well as capturing nearby 

stars for use in determining the system PSF.  At the beginning of the test ANIK-F1 is 

bright (roughly a magnitude 9 object) and clearly visible in the center of the field of view 

of the telescope.  Efforts to manually identify its position are further aided by the fact that 

it doesn’t change position appreciably throughout the test.  Also, the satellite is readily 

identifiable when it emerges from the eclipse (again returning to its pre-eclipse 

magnitude), thus a linear trajectory of the object can be predicted through the eclipse and 

its exact position (to within a pixel) can be predicted for every frame, thus no other image 

registration algorithm is required.  A priori sub-pixel location information is not required 
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to perform the experiment as all existing tests are designed to make a simple binary 

decision of whether the object is within the pixel or not. 

The next step in the experiment is to extract the point spread function from the 

images for use by the different detectors.  Three different detectors are used to process 

the data from this test for comparison.  The first is the point detector (described in the 

next section), which is currently used by the SST, LINEAR, Pan-STARRS and other 

deep space object detection programs [26, 41].  This detector does not utilize a point 

spread function since it analyzes the data just within a single pixel to make detection 

decisions.  The second detector is the correlator or matched filter detector.  This detector 

is used optionally by the Pan-STARRS program to make detection decisions and requires 

the use of a PSF [41].  As shown in Figure 20, a star is selected to provide the PSF shape 

for the correlator on each night.  The selected star is chosen to match the shape of the 

satellite observed near the start of the test in order to help maximize the performance of 

the correlator.  The correlator as implemented by the Pan-STARRS program is not 

designed to consider undersampling or sub-pixel motion, so a single empirically 

measured PSF is used each night to implement this particular detector. 

 

Figure 20. Images of stars used for correlator on (a) 2012 March 13, (b) 2012 March 14, (c) 2012 
March 15. 
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The PSF model used for the MHT requires a properly sampled PSF that can be 

used to generate the PSF shape for the nine different hypotheses used in the test 

corresponding to the nine different sub-pixel locations.  This was done using a model-

based approach.  This same optical model was used by the MIT Lincoln labs team to 

measure the PSF in order to achieve focus and alignment of the telescope in March of 

2012 just preceding the eclipse event.  The same optical model is used for characterizing 

the PSF in hopes of leveraging their experience with the telescope to compute the PSF 

[4].  Although other methods for computing a properly sampled PSF from undersampled 

imagery exist, performing a comparison study between these methods was not the 

purpose of this paper [51, 52, 53, 54, 55].  Clearly, a better PSF estimate would lead to 

even better performance for the MHT method since it is the only detector tested in this 

study that utilized of a properly sampled PSF.   The detailed steps on how the modeled 

PSF used to construct the MHT is computed are described in Section 4.6. 

 The final step in the test is to provide each detector with the raw image data in a 

19 by 19 window centered on the pixel containing the satellite for all frames of data 

gathered by the SST of the satellite.  Each detector reports an SNR for the satellite for 

each frame of data.  The SNR values over 10 frames are locally averaged to reduce the 

effect of noise.  The averaged SNR is then converted to a probability of detection for the 

point detector, the correlator and the MHT via the Eqs. (2.34), (2.35), and (4.20) 

respectively.  Although a detection decision could be made based on the reported SNR 

for each detector in each frame, the computed probability of detection reflects the 

statistical chance of making a correct detection decision for the object based on the 

average SNR and the estimated noise level present in the data.  The computed probability 
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of detection is a superior performance metric to SNR or empirical detection frequency 

because it conveys the improvement of one detector over another in terms that can be 

more readily understood.    Results of the reported probability of detection for each 

detector on each night are reported in Section 4.7 of this chapter. 

 

4.2.2 The SST System  

The SST has a Mersenne-Schmidt design selected for both its wide FOV and 

compactness [13].  The 3.5 m diameter primary mirror was built to meet the requirement 

of detecting small faint objects with relatively short integration times, thereby avoiding 

streaking of the satellite image across multiple CCD pixels so that the objects are suitably 

modeled as point sources.  Another characteristic of the Mersenne-Schmidt design is a 

curved focal surface, which allows the SST to better optimize spot size across the field of 

view and spectral response of the CCD.  Consequently, the curved CCD imager and 

mosaic camera were developed specifically for the telescope [3]. 

 

4.2.3 The SST Detection Process 

As discussed in the Section 2.4, the SST’s baseline detection method is based on 

the point detection BHT used for Lincoln Near Earth Asteroid Research (LINEAR) 

conducted at the Experimental Test Site near Socorro, NM.  In normal operating mode 

the CCD’s 15 µm pixels are 2 by 2 binned and the array has a 6144 by 4096 binned 

format.  While binning the data increases the SNR and improves detection performance, 

it also increases the amount of undersampling of the data [43]. 
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4.3 Binary Hypothesis Testing (BHT) 

 Replacing the baseline BHT with a correlation based BHT improves the SST’s 

detection performance.  This method for improving the SST’s detection performance is 

explored by [16] in which a comparison of the SNR of two different binary hypothesis 

tests, a correlator and a point detector, is made using the ANIK-F1 experimental data.  In 

this comparison, stars in the FOV are used to estimate the total system PSF.  Figure 20 

(a-c) shows irradiance maps of each star within a 19 by 19 window cropped from the SST 

images on three consecutive nights and used in the correlation detector.  One item to note 

is that in Figure 20 (b & c) the star appears to have a different shape than the star in 

Figure 20 (a).  The change in apparent shape of the star is due to the images being 

centered at different sub-pixel locations.   If the shape of the object of interest is not the 

same as the total system PSF used in the correlator, the detection performance will be 

degraded.    

The SST’s threshold used for detection during the technical demonstration period 

is γ = 6, which inherently sets the probability of false alarm.  The probability of false 

alarm is defined as the chance that a pixel that contains only background light (no object) 

will produce a detector output that exceeds the threshold value of 6.  When objects are 

not present in the pixel the operations described in Eq. (2.34) and Eq. (2.35) are designed 

to produce unit variance zero mean Gaussian random variables.  Therefore, the 

probability of false alarms, ,FAP  per pixel is 
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where BaselineSNR  is the output of the point detector, corrSNR is the output of the correlator, 

and 0H  is the hypothesis that no object is present in the pixel. 

 

4.4  The SST PSF Modeling  

The long exposure modeled PSF, ( )Lh x  centered on a pixel is then computed 

from Eq. (2.14)  where x is the Nyquist pixel coordinates.  One important property of the 

Nyquist sampled PSF is that a sub-pixel shift, ,x∆  of the model does not significantly 

change its shape.  Modeling the effects of x∆  on the image irradiance pattern is 

necessary because the point source is not always in the center of a pixel.  To reproduce 

the change in irradiance pattern measured by each of the 30 µm pixels in the CCD as a 

function of ,x∆   the modeled PSF is down-sampled using the ratio, ς, between the 30 µm 

pixels and the Nyquist pixels size from Eq. (2.38).  The shifted and down-sampled PSF is  

 ( ) ( ) ( ), ,  samp Lh m x h x m x x dxδ ς ς
∞

−∞
∆ = ⋅ − − ∆∫   (4.2) 

thus the sampled irradiance is  

 ( , ) ( , ) ,samp sampi m x h m x Bθ∆ = ⋅ ∆ +   (4.3) 

where B is the background light, and θ is the total number photons emitted from the 

object per integration, and m is a integer valued pixel location in the CCD array.  To 

build the PSF model, estimates of the coefficients 5 11Z Z− were made using the Donut 

algorithm and inserted into the PSF model using Eqs. # (2.3)-(2.6) [17].  

The method of LS, described in Chapter III using Eq. (3.37), is used to jointly 

find 4Ẑ  and 0̂r  from a star selected the first frame in the ANIK-F1 experimental data 

(see Figure 20).  A color map of the PSF model generated using a the SST star image on 
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2012 March 14 with both Nyquist and 30 µm sampling are shown respectively in Figure 

21 (a) and (b).  In the SST data, d(m), the star image can be centered at any sub-pixel 

location and the corresponding irradiance pattern changes.  By shifting the modeled PSF 

the changes in the irradiance pattern in the star data can be captured.  If the PSF is 

undersampled spatially, as is the case with the 30 µm detected PSF, the shifted PSF will 

have aliasing artifacts [43].  Figure 21 (c) depicts the aliasing artifacts produced when the 

undersampled PSF is shifted using the Fourier transform shift method   

 ( ) ( ) ( )cos sin ,  andm m x i m xυ = ⋅ ∆ + ⋅ ∆   (4.4) 

 ( ) ( ){ } ( ){ }1, ,shift samph m x RE h m mυ− ∆ = ⋅ F F   (4.5) 

where x∆ magnitude of sub-pixel PSF shift such that the modeled irradiance is  

 ( ) ( ), , .shift shifti m x h m x Bθ∆ = ⋅ ∆ +   (4.6) 

However, if the Nyquist sampled model is shifted before down sampling to 30 µm using 

Eq. (4.2) as shown in Figure 21 (d) and (e) the irradiance pattern does not have the same 

aliasing artifacts as seen in Figure 21 (c).    
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Figure 21. The SST’s phase retrieved PSF on 2012 March 14. (a) Centered Nyquist sampled PSF, 
a = 2.75e-07 m, on a 2048 by 2048 grid (b) Centered down-sampled PSF, a = 30 µm, on a 19 by 
19 grid (c) Model PSF, a = 30 µm, shifted to the lower right hand corner of pixel (10,10) with 
aliasing artifacts. (d) Nyquist sampled model PSF shifted without aliasing artifacts. (e) Sampled 
model PSF, a = 30 µm, up sampled from Nyquist sampled model PSF shifted to the lower right 
hand corner of pixel (10,10) without aliasing artifacts. 

 

The accuracy of the sampled irradiance models shifted two different ways can be 

quantified using the correlation coefficient [56].  The correlation coefficient measures 

how accurately the modeled irradiance pattern matches the measured irradiance pattern 

on a scale from zero to one, where a value of one means they are perfectly correlated and 
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zero means they are uncorrelated.   The correlation coefficient between both irradiance 

models, Eq. (4.6) and Eq. (4.3), and the measured data are computed respectively as 

( ) ( ){ }

( )( ) ( )( )

( )( ) ( )( )
1

22

1 1

, ( , )

ˆ ,

ˆ ,

d

d d

shift shift

M

shift
m

M M

shift
m m

x d m i m x

d m B h m x

d m B h m x

ρ ρ

θ

θ

=

= =

∆ = ∆

 − ⋅ ∆ 
=

− ⋅ ∆

∑

∑ ∑

            (4.7) 

and   

( ) ( ){ }

( )( ) ( )( )

( )( ) ( )( )
1

22

1 1

, ( , )

ˆ ,
.

ˆ ,

d

d d

samp samp

M

samp
m

M M

samp
m m

x d m i m x

d m B h m x

d m B h m x

ρ ρ

θ

θ

=

= =

∆ = ∆

 − ⋅ ∆ 
=

− ⋅ ∆

∑

∑ ∑

           (4.8) 

Figure 22 is a plot of the maximum values of ( )shift xρ ∆  and ( )samp xρ ∆  for images 

of ANIK-F1 on 2012 March 14 as its irradiance is split between pixels.   As ANIK-F1’s 

irradiance moves between pixels, even though ( , )shifti m x∆ is shifted to maximize the 

correlation coefficient, the ( )shift xρ ∆   goes down.  In contrast, the maximum value of 

( )samp xρ ∆  is relatively constant regardless of where in the pixel the irradiance of ANIK-

F1 is located, thus illustrating the importance generating a Nyquist sampled model.   In 

addition, the strong correlation between the modeled PSF and the data indicates that the 

model is an accurate representation of the SST PSF.   



71 
 

 

Figure 22. Correlation between two different irradiance models and the images of ANIK-F1 on 
2012 March 14 as its irradiance is split between pixels.  One model is shifted on the 
undersampled grid, ( ) ,shift xρ ∆  and the other on a Nyquist grid and then down sampled,

( ).samp xρ ∆     
 

4.5 Data Normalization Using Outlier Rejection Techniques 

 Another feature of the proposed algorithm design is that background noise 

statistics are computed using a reduced set of data from the window around the pixel to 

be tested.  This new noise power estimation technique has the feature that it rejects any 

noise sample in the window surrounding the pixel to be tested, whose values do not 

conform to those predicted by Gaussian statistics.  In this way, bad pixels and nearby 

stars are not used to compute the noise generated by the background light.  Current 

algorithms used by the SST and LINEAR use all the pixels in the window surrounding 
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the point to be tested to compute the local noise standard deviation, σ [25].  In this 

process the background B is computed as in Eq. (2.23).  The squared deviations, χ, from 

the background within the window are computed as 

( ) ( )2( ) .m d m Bχ = −                                                  (4.9) 

These squared deviations follow a chi-squared distribution based on the assumed 

Gaussian nature of the data, d.  Since samples size is large ( )2 361dM =  the distribution is 

symmetric.   Therefore, the mean of the squared deviations, M, within the window is 

found 

( ) ,M E mχ=                                                  (4.10) 

then the standard deviation, S, of χ is computed: 

( ) ( )
2

22 21
2

( )
.

dM

m

d

m
S E m E m M

M

χ
χ χ = = − ≈ −   

∑
              (4.11) 

A new noise standard deviation, ,ζ   is computed from the window using Eq. 

(2.24) by excluding any pixel, m, in the calculation where ( ) ( )3 .m M Sχ ≥ + ⋅  The new 

noise standard deviation is included in the following MHT for improved detection 

performance by normalizing the data as in Eq. (2.34)  by replacing σ with ζ.   

 

4.6 Multi-hypothesis testing (MHT) 

 A multi-hypothesis (M-ary) detector is introduced because the image of a space 

object does not always fall in the center of the pixel.  In addition, simple correlation 

operations are not desirable because the shape of the sampled PSF changes depending on 
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where the object is imaged on the array.  In order to account for the possibility that the 

image is in different places within the detector, we introduce a multi-hypothesis test 

(MHT) strategy.  The hypothesis that an image of a space object is not present in the 

pixel, 0 ,H  plus the nine different sampled PSF shapes, shown in Figure 23 form the ten 

hypotheses for the MHT, { }0 1 9, ,..., .H H H   This choice of hypotheses captures a great 

deal of the spatial dependence of the PSF while only introducing one order of magnitude 

more computations. 

 

 

Figure 23. Hypothesis that the point source image is in either the center of the pixel, H1, 
on the sides, H2-H5, or corner of a pixel, H6-H9. 
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According to Kay, the M-ary decision to select one hypothesis, ,kH  over another 

hypothesis, ,iH  is the M-ary maximum likelihood (ML) decision rule.  Kay derives the 

ML decision rule using a Bayes risk, R, approach under the assumption of uniform cost 

and equal priors to decided between the different hypotheses { }0 1 9, ,..., .H H H  He assigns 

cost, ikC   to the decision if iH  is selected when kH  is true. The risk is calculated as  

 ( ) ( )
9 9

0 0

| ,ik i k k
i j

R C p H H p H
= =

= ∑∑   (4.12) 

where 

 
0

.
1ik

i k
C

i k
=

=  ≠
  (4.13) 

By assuming uniform cost, each of the hypotheses is given the same priority.  With this 

choice of cost, the information provided on position of the object in the pixel is weighted 

the same as the binary decision of whether an object is detected or not in the MHT.  The 

position information from the MHT is important for improving the SST’s metric accuracy 

over the BHT.  However, detection is more important than position accuracy and this 

choice of cost could reduce the MHT’s detection performance.  Even with this penalty in 

detection performance, the MHT will be shown to still outperform the correlator and the 

baseline detector in terms of probability of detection.  In addition, by making this choice 

of cost, the derivation of the detector's sufficient statistic is greatly simplified and likely 

produces a detector that is more computationally efficient to apply.  

Kay shows that to minimize R, the hypothesis that minimizes the average cost of 

deciding iH if ( ),d w z   is observed, ( )( ), ,iC d w z  should be selected where 
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 ( )( ) ( )( )
9

0

, | , ,i ik k
k

C d w z C p H d w z
=

= ∑   (4.14) 

for 0,1,....,9i = .  Inserting Eq. (4.13) into Eq. (4.14)  
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( )( ) ( )( )

9

0

9

0

, | ,

| , | , .
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C d w z p H d w z

p H d w z p H d w z

=
≠

=

=

= −

∑

∑
  (4.15) 

Since ( )( )| ,kp H d w z is not a function of i the risk is minimized by maximizing 

( )( )| , .ip H d w z   Therefore the minimum risk decision rule is choose kH  if,  

 ( )( ) ( )( )| , | ,      .k ip H d w z p H d w z i k> ∀ ≠   (4.16) 

Then for equal priors probabilities,  

 

( )( ) ( ) ( )
( )

( )
( )

( , | )
| ,

( , )
1( , | )

10 ,
( , )

i i
i

i

p d w z H p H
p H d w z

p d w z

p d w z H

p d w z

=

=

  (4.17) 

so maximizing ( )( ), | ip d w z H  maximizes ( )( )| ,ip H d w z  and the ML decision rule 

becomes choose kH  if [38]  

 ( )( )
( )( )

( )( )
( )( )0 0

, | , |
     .

, | , |k i

k i
G G

p d w z H p d w z H
i k

p d w z H p d w z H
Λ > Λ ∀ ≠ 

  (4.18) 

Assuming the prior probability that an object is not in a pixel is equal likely as an object 

being in the pixel is not a precise choice due to the density of stellar objects.  However, 

the choice of equal priors is chosen because the true probabilities are unknown.  

Furthermore, the baseline detector and correlator make this same assumption so the 

comparison of the MHT to these detectors is a like comparison.  As with cost selection, a 
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better choice in priors could result in a better performing detector, but choices of uniform 

cost and equal priors are shown to produce a MHT that outperforms the existing BHT.     

  Since Eq. (4.18) has the same forms as the LRT given in Eq. (2.25), the sufficient 

statistic for BHT given in Eq. (2.34) can be applied to the MHT accounting for the 

additional hypotheses based on sub-pixel position shifts listed in Table 1, & .i iα β  

Therefore, the ML decision rule can be determined as a function of SNR for each 

location, ( ) ,if SNR  so that Eq. (4.18) becomes chose kH if 

 ( ) ( )       .
k iG k i Gf SNR f SNR i kΛ = > = Λ ∀ ≠   (4.19) 

where MHT sufficient statistic is 
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⋅
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∑∑
 (4.20)  

• H
0
: Hypothesis that no satellite is present. 

• H
i
: Hypothesis that a satellite is present (see Table 2)  

 
              Table 2. Alternative Hypothesis Sub-pixel Shifts (corresponding to Figure 23)  

Alternative (i) Horizontal Shift (αi) Vertical Shift(βi) 
1 0 0 
2 0 -15µm 
3 0 15µm 
4 15µm 0 
5 -15µm 0 
6 15µm -15µm 
7 15µm 15µm 
8 -15µm -15µm 
9 -15µm 15µm 
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Applying a generalized likelihood ratio test (GLRT), PSF shift estimates, ( )ˆˆ ,i iα β , are 

used to determine if there is a detection in the ML location [38]  
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where  

 ( ) ( )( )
, , 1:9

ˆˆ , arg max , |
i i

i i i
i

d w z H
α β

α β
=

= .  (4.22) 

Therefore, the GLRT can be rewritten as 
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  (4.23) 

With this approach, the M-ary hypothesis, ,M aryH −  that satisfies the ML decision rule and 

and exceeds the detection threshold, M aryγ − , is determined by finding  

 ( )
0

1:9
max ,

M aryH

i M aryi
H

SNR γ
−

−=

>
<

  (4.24) 

which provides sub-pixel image location information and detection simultaneously. 

An important goal in deriving the MHT is to improve the probability of detection, 

,DP without raising the probability of false alarm, FAP .  In this case the probability of false 

alarm is the chance that a pixel with no space object in it will be classified as having one.  
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In mathematical terms, this is the probability that the SNR output of the detector with no 

object present will exceed the detection threshold. Computing the false alarm probability 

is a challenging task and may prove mathematically intractable.   Instead we compute an 

upper bound on the probability of false alarm and then use that upper bound as our 

estimate of the false alarm probability.  This guarantees that the new MHT test will not 

raise the probability of false alarm over the existing BHT used by the SST and LINEAR.  

Extending the MHT, from testing only one pixel for 0 9H H−  to testing each pixel 

in the frame, results in repeating the same test four times in the corners and two times on 

the sides of each pixel as depicted in Figure 24.  Therefore, to minimize the number of 

hypothesis tests each pixel only needs to be tested in the center, on one corner and on two 

sides and the overlap of the grids forms the 9 hypotheses for each pixels.  While this 

technique reduces the MHT’s number of computations, it is a slight departure from 

testing each pixel 9 times because the window statistics around each pixel varies. 

 

Figure 24. Illustration depicts the overlap of the corners and sides of the pixels on the CCD. (The 
black dots represent the center of the pixel; the green dot is the corner; blue and red dots are the 
sides) 
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Minimizing the number of hypothesis tests, thereby decreasing processing time and .FAP  

The MHT computational cost computed in terms of the number of floating point 

operations (Flops) is ~6 times more than the baseline approach as listed in Table 3.  

 

                                  Table 3. Summary of the Flops required for Each Detector 

Parameter   Baseline Flops        Correlator Flops     M-ary Flops 
B  Md

2   Md
2  4Md

2 
σ 3Md

2 3Md
2 12Md

2 
SNR   2 2Md

2+2 8Md
2+2 

Total Flops     4Md
2+2 6Md

2+2 24Md
2+2 

 

Two simplifying assumptions are made to find the upper bound of the FAP for the 

M-ary test.  The first is considering FAP  for each alternative hypothesis of the M-ary test 

to be mutual exclusive such that 
4
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H
=

= ∅


  The second assumption is that the result of 

each individual alternative in M-ary test is statistically independent of each other.   Under 

those two conditions the FAP  can be bounded above by extending Eq. (4.1) to  
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The estimated FAP  is higher for the M-ary test than for the BHT, but it can be reduced by 

raising the M-ary detection threshold to  6.2212M aryγ − =  so that 4 2.467e-010FAP ≈ ×

9.87e-010.≈  

 An example of the detection performance gains from the M-ary test are shown in 

Figure 25(a-f) using data from the satellite eclipse experiment.   To produce the plots, 

running averages with a 50 frame window for the baseline detector SNR, ,Baselineµ   the 

correlator SNR, ,corrµ  and M-ary test SNR, ,M aryµ −  were found in the threshold region 

for all three detectors.  The probability of detection for the baseline detector, the 

correlator, and M-ary test as a function of running average are respectively  

( )
2 3

( )
2

6

1 ,
2

Baseline

Baseline

t

D BaselineP e dt
µ

µ
π

∞ − − 
=   

 
∫                   (4.26) 
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 
 

∫    (4.28) 

based on the Gaussian noise assumption and the fact that tracklets require three 

consecutive frames for detection [25].  Note that the threshold in Eq. (4.28) is adjusted to 

keep the FAP approximately the same for all three detectors.    

 The probability of detection computed using Eqs. # (4.21), (4.22) and (4.23) are 

based on the running average SNR output from each detector and represent the average 

probability of detection that can be expected as the satellites irradiance decreases based 

on the Gaussian distribution of the noise.  In the case of the M-ary test, the running 
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average is produced using the highest instantaneous SNR output from each of the four 

alternatives in the M-ary test per pixel, which is selected based on the ML decision rule 

using Eq. (4.12).  In this sense, in terms of detection the results are interpreted as a binary 

detection solution; either detection occurred in the pixel or it did not. Having a single 

probability of detection for each CCD pixel tested with the MHT is important so that it 

can be compared with the BHTs. The other important information resulting from the M-

ary test about the sub-pixel location necessary for improving the SST’s metric accuracy is 

not included in the calculation.   In addition, the fact four tests are done at each pixel 

producing SNR values that each may exceed the detection threshold is not factored into 

the ( )
M aryD M aryP µ

− − calculation.  Including the additional test results in the calculation 

would only serve to raise the probability of detection of the M-ary test because each of 

the additional hypotheses could also result in the detection of the object.  Therefore, Eq. 

(4.23) only provides the lower bound estimate of probability of detection for the M-ary 

test.  

  When ANIK-F1’s irradiance is high, all three detectors can detect the satellite, but 

as the satellite dims as it enters eclipse the detector perform differently.  Eventually, the 

satellite becomes so dim that it is undetectable by any of the detectors.  The area of 

interest then becomes the detection threshold hold region.  As seen in Figure 25, on all 

six nights the M-ary detector detection performance significantly exceeds both the 

correlator and the baseline detector.  This means that the M-ary test detects much dimmer 

objects that the baseline algorithms.  The performance gains seen on 2012 Mar 23 are 

only due to better calculations of the background noise statistics.  On that date there was 
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a narrow total PSF and a lack of aliasing because the SST tracked the object in the same 

pixel. 

 

Figure 25. Comparison of the baseline detector, the correlator, and M-ary test probability of 
detecting (Pd) ANIK-F1 as it enters eclipse on (a) 2012 March 13 (b) 2012 March 14 (c) 2012 
March 15 (d) 2012 March 21 (e) 2012 March 22 (f) 2012 March 23 where the PFA is equal for all 
three detectors.  
 

 Using data from six nights of ANIK-F1 eclipse observations, a direct comparison 

between the baseline detector and both the correlator and M-ary test shows an improved 

probability of detecting a space object.  A plot of ( )
corrD corrP µ  and ( )

M aryD M aryP µ
− −    

versus ( )
BaselineD BaselineP µ  for the nights of 2012 Mar 13-15 and 2012 March 21-23 is shown 

in Figure 26.  The plot shows that the M-ary test has a higher probability of detection that 
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the correlator and the baseline detector at the detection threshold.  On 2012 March 23, the 

performance gains were not as dramatic because the objects irradiance was concentrated 

in one pixel due to excellent tracking of the satellite.  However, when the object is not is 

not centered on a pixel the M-ary test has a 1
M aryDP

−


 when the baselines has only a 

0.5.
BaselineDP =   This 30-50% demonstrated improvement in the probability of detection 

means that significantly more dim objects like small asteroids will be found with the SST 

using the M-ary detector. 

 

Figure 26.  Composite plot of the probability of detecting ANIK-F1 as it enters with either the 
correlator or M-ary test versus the baseline detector for the nights of 2012 Mar 13-15 and 2012 
March 21-23.  
 
  

In addition to improved detection performance, the M-ary test can also provide 

better estimates for object irradiance than the baseline detector.  The baseline detector 

estimates are made by adding up the number of digital counts in the pixels where the 
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object was detected to estimate the object’s irradiance, ˆ .Baselineθ   In contrast, the SNR 

output of the M-ary test is linearly related to the LS estimate of the objects’ irradiance, 

ˆ ,M aryθ −  in terms of digital counts of by substituting Eq. (4.20) into Eq. (3.33)  

2

ˆ .
( )

d

M ary
M ary M

samp
m

SNR

h m

ζ
θ −

−

⋅
=

∑
    (4.29) 

Figure 27 shows that by using the M-ary test results to estimate the object 

irradiance a much higher digital count is determined because it is counting information 

across the 19 by 19 window weighted by the PSF rather than only the pixels exceeding 

threshold.  Estimating the digital count more accurately should improve the SST’s 

photometric fit results, which have been shown to have a higher variance for objects with 

magnitudes fainter than 18 Mv [3]. 

 

Figure 27.   Comparison of the baseline detector and the M-ary test (least squares) estimates of 
ANIK-F1 irradiance on 2012 March 14 as it enters eclipse. 
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4.7 Conclusions 

A MHT can provide a significant improvement in the SST’s detection capability 

over a BHT when the object is not centered on a single pixel, as shown in Figure 26.  

Since the SST’s mission is to detect unknown space objects, rather than track known 

objects it is unlikely that any object will repeatedly fall in the center of a pixel during the 

three consecutive frames used for detection.   Recalculating the standard deviation of the 

background light in the window surrounding the pixel being tested by not including 

outliers also contributes to the MHT’s improved Pd.  The gains in detection performance 

by the MHT are realized by mitigating the aliasing effects of undersampling using phase 

retrieved PSF model, but come at the cost of a 600% increase in processing power.  

Simultaneous to detection, the MHT also provides sub-pixel position information and 

more accurate estimates of object irradiance.  These three improvements to the SST’s 

performance by the MHT come with a manageable computational cost that can be 

afforded with relatively inexpensive modern computers compared to the cost of enhanced 

optics and therefore give good cause to investigate the implementation of this detector.   
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V. Phase Retrieval with a Short Exposure Atmosphere 
Equation Section 5 

 
       Since the SST is considering a new camera that can do short-exposure imagery, the 

phase retrieval algorithm described is designed for the primary purpose of diagnostics of 

an optical system using point source image intensity data (i.e. system impulse response). 

Two cases are considered first with no atmosphere present and the second with short 

exposure imagery data.   The intended application of this technique is to provide 

quantitative feedback during the focus and alignment of large three mirror telescopes like 

the Space Surveillance Telescope (SST), James Webb Space Telescope (JWST), and 

Large Synoptic Survey Telescope (LSST) [17, 21, 44].  For these telescopes phase 

aberrations must be recovered using post processing because the focal surface array 

cannot measure the phase directly.   

 The primary advantage of this phase retrieval technique over existing phase 

retrieval techniques is that it converges on the correct set of Zernike coefficients while 

the telescope is in-focus.  For three mirror telescopes this is an important capability since 

defocusing the telescope requires movement of both the secondary and tertiary mirrors 

rather than only translating the camera about the focal plane or with the addition of a lens 

for defocusing [17, 46].  In addition, in-focus phase retrieval would enable optical 

diagnostics of the telescope using its standard imagery data so the status of alignment 

could be monitored continually from star data in the field of view (FOV).  The new phase 

retrieval algorithm described in this chapter achieves in-focus phase retrieval by 

estimating the Zernike coefficients using both an estimated image plane electric field (E-

field) and the measured intensity data.  Use of the estimated E-field rather than the 
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estimated phase avoids the problems associated with unwrapping 2-D phase produced by 

the estimation algorithm. 

This chapter is broken up into four sections.  The introduction covers the tools 

used for propagating the field with a Fourier transform of the generalized pupil function, 

estimating the point spread function (PSF) from point source data, and estimating the 

electric field with the Gerchberg-Saxton algorithm.  Then Section 5.2 demonstrates the 

advantages of estimating Zernike coefficients with the E-field by comparing the 

correlation of E-fields and the correlation of intensity patterns produced by different 

phase aberration.  Within this section a new phase retrieval algorithm and its subroutines 

is described.  This section also covers simulations are used to show the performance 

gains of the new algorithm with a wide variety of phase aberrations compared to the 

intensity based LS estimation technique used in isolation.  Then Section 5.3 covers two 

laboratory demonstrations that are used to show how the new phase retrieval algorithm 

performs with measured data.  The results support the conclusion that the new algorithm 

performs well at estimating Zernike coefficients for phase aberration of an optical system 

in or near focus. 

 

5.1 Introduction 

 The following background is intended to describe the tools needed for phase 

retrieval including: how the fields are propagated with a Fourier transform of the 

generalized pupil function, estimating the point spread function (PSF) from point source 

data, and estimating the electric field with Gerchberg-Saxton.  This summary of 

techniques provides the fundamental background for understanding how the new phase 
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retrieval algorithm is implemented.  One of the most important techniques is the 

propagation of the field through a Fourier transform of the generalized pupil function, 

which is critical for each step in the phase retrieval process.  Since the data contains 

noise, the expectation maximization algorithm described for PSF estimation from the data 

is a critical input to the new Zernike coefficient estimation technique.  The other 

technique critical for the new in-focus Zernike coefficient phase retrieval algorithm is the 

estimation of the electric field from the estimated PSF, which is done using Gerchberg-

Saxton (GS) phase retrieval. 

 

5.1.1 Generalized Pupil Function 

This section is a recap of the description of the generalized pupil function from 

Chapter II intended to highlight the dependence of the image plane electric field and 

intensity on the wavefront error, ,W  in the exit pupil of an optical system.  The majority 

of  the wavefront error in an optical system can be decomposed into N-number of Zernike 

polynomials, 1 ,Nφ φ−  represented as 

 ( ) ( )1 1 1 1 1( ) ... ,N NW u Z u Z uφ φ= ⋅ + + ⋅   (5.1) 

where 1u  is a coordinate in the pupil plane and 1 NZ Z−  are the Zernike coefficients [31].  

The aberrations can be represented in the generalized pupil function, ( )1 ,uP  as  

 ( ) ( ) ( )1
1 1 e ,j W uu A u ⋅=P   (5.2) 

where ( )1A u  is the pupil transmittance function.  From the generalized pupil function a 

model of the electric field as a function of image plane pixel coordinates, m,  and 

wavefront error, ( , ),H m W   is computed using a discrete Fourier transform, 
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 ( ) ( )1

1

2
1 1( , ) e j mu

u
H m W P u P uπ= =   ∑ F   (5.3) 

and the corresponding PSF, ( ), ,h m W  is 

 ( ) ( ) ( )2 *, ( , ) , , .h m W H m W H m W H m W= =   (5.4) 

 

5.1.2 Intensity Model and PSF Estimation  

To conduct Gerchberg-Saxton (GS) phase retrieval, an accurate PSF and intensity 

model must be estimated from the data.  In the case of a true point source, as modeled in 

the simulated data described in the next section, the object is treated as a Kronecker delta 

function, δ.  A point source is not always available and in those cases the object, O, must 

be deconvolved from the data to estimate the PSF. In addition, the data contains a flat 

background that must be estimated.   

Estimates of the intensity model and PSF are made from the data using an EM algorithm 

similar to one developed by Schulz [57].  The difference between the data used in Schulz’s blind 

deconvolution and the data used for the following derivation is that the data includes a flat 

background.  The intensity model, I, as a function of pixel coordinates and wavefront error is 

 ( ) ( )ˆ ˆ, , ,I m W h m W Bθ= ⋅ +   (5.5) 

where the estimate of the background, ˆ ,B   

 ( ) [ ]ˆ 1, ,dB median d m m M= ∀ ∈     (5.6) 

is added to the scaled PSF.  Then the scale factor, ˆ,θ  is the number of estimated photons 

in the measured point source  

 
1

ˆ ˆ( ) ,
dM

m
d m Bθ

=

 = − ∑   (5.7) 
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and dM  is the number of pixel coordinates in the PSF window [18].  The EM algorithm 

used to estimate the PSF begins by hypothesizing the data, ( ) ,d m to be 

 ( ) ( ) ( )1 2d m d m d m= +    (5.8) 

where ( )1d m  and ( )2d m are independent Poison random variables with mean that are a 

functions of the object intensity, ,θ   

 ( ) ( )1 ,E d m h mθ  = ⋅ 
   (5.9) 

and of the background, ,B   

 ( )2 .E d m B  = 
   (5.10) 

Since that the hypothesized data sets are assumed to be independent of one another and 

Poison distributed, the joint PDF is 

 ( ) ( ) ( ) ( )

( )
( )

( )

1 2

1 2
1 1 2

, 1: ,
! !

d
d m h m d mM B

d
x

h m e B eP d d m M
d m d m

θθ − ⋅ −

=

⋅
∀ ∈ = ∏





 

 

  (5.11) 

and the log-likelihood function is 

 
( )( ) ( ) ( )( )

( ) ( ) ( )

1
1

2

, , ln

ln .

dM

m
L h m B d m h m

h m d m B B

θ θ

θ
=

= ⋅

− ⋅ − −

∑ 



  (5.12) 

The E-step in the EM algorithm is found to be  

 

( )( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

( ) ( ) ( )
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1
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θ
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=
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  (5.13) 
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where λ is a Lagrange multiplier [58].  The Lagrange multiplier is introduced to constrain 

the estimation of the PSF to sum to a value of one.  Then the M-step for the PSF and 

Lagrange multiplier are found by first by differentiating Θ  with respect to ( )0 :h m     

 
( )

( ) ( )
( ) ( )10

ˆ
ˆ .ˆ ˆ

d oldM

old
m

h m d m
h m h m B h m

θ
θ λ

θ=

⋅ ⋅∂Θ
= − −

∂  ⋅ + 
∑   (5.14) 

Therefore the PSF update for each pixel, 0,m  is found to be 

 ( ) ( ) ( )
( ) ( )

0 0
0

0

ˆ
ˆ ˆˆ

old
new

old

h m d m
h m

h m B
θ

θ θ λ
⋅ ⋅

=
 ⋅ + + 

  (5.15) 

and the Lagrange multiplier updates to be 

 ( ) ( )
( )1

ˆ
ˆ,ˆ ˆ

d oldM
new

old
m

h m d m
h m B

θ
λ θ

θ=

⋅ ⋅
= −

 ⋅ + 
∑   (5.16) 

since 

 ( )
1

1.
dM

m
h m

=

=∑   (5.17) 

The EM algorithm is run until the sum of squared error between d and I equals the 

estimated local noise variance as the sum of d and at that point the PSF is estimated to be 

 ( ) ( )0
ˆ .newh m h m=   (5.18) 

 

5.2 Direct Search LS vs. E-Field based Estimation 

Zernike coefficient estimation algorithms that rely only on gradient descent 

techniques for minimizing the sum of squared error (SSE) between the modeled and 

measured intensity patterns have the problem of getting trapped in local minima [35, 59].  

A new Zernike coefficient technique introduced in this chapter that maximizes the 
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correlation between an estimated electric field and a modeled electric field also has the 

problem of getting trapped in local maxima.  However, by using the two Zernike 

estimation techniques in conjunction, accurate estimates can be found for low order 

Zernike coefficients (Z4-Z11) that correspond to the aberrations that does not suffer from 

local minima/maxima. 

 

5.2.1 E-Field versus Intensity Pattern Correlation 

The direct search LS phase retrieval technique uses a modeled PSF and the 

measured intensity of a point source to estimate the Zernike coefficients.  However, the 

modeled electric field described in Eq. (5.3) can also be used to estimate Zernike 

coefficients from estimates of electric field in the detector plane.  The advantage of using 

the electric field to estimate the Zernike coefficients is better understood by quantifying 

and comparing examples of the pair wise correlation between the electric field patterns 

with the pair wise correlation of the intensity patterns produced by the Zernike 

polynomials and corresponding Zernike coefficient shown in Figure 28.  In this 

comparison, the modeled electric field phase is completely known a priori.  However, in 

the new phase retrieval algorithm presented in Section 5.2.4, the electric field is estimated 

using GS and may not produce an electric field that is as accurate as if was directly 

measured from the point source.  So this demonstration may not predict how well the 

proposed estimator will work, but instead motivates the design of an algorithm that 

attempts to use estimated electric fields in additional to intensity patterns for Zernike 

coefficient estimation. 
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 Examples of the numerical analysis results displayed as surface plots are 

produced using the Zernike Polynomials for defocus, 4 ,φ  and spherical aberrations, 11.φ  

The electric field associated with each scaled Zernike polynomial is produced using Eqs. 

(5.1)-(5.3) such that 

 ( ) ( ){ }, 1 , , 1( , ) exp ,i j i j i jH m Z A u j Z uφ = ⋅ ⋅ F   (5.19) 

where ( )1A u  is the circular aperture function shown in Figure 28. 

 

Figure 28. Image of the aperture function, ( )1 ,A u on a 128 by 128 grid for the experimental 
setup described in this chapter.   
 

Then the pair wise complex correlation coefficient of the electric field pattern in the 

image plane is computed as 

 ( )
( ) ( )
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 
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   
   
   

∑

∑ ∑
  (5.20) 
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where RE is the real part of the complex value and the pair wise normalized correlation 

coefficient of the intensity pattern in the image plane as 

 ( )
( ) ( )

( ) ( )

1
1 1

2 2
22

1 1

, ,
,

, ,

.

d

d d

M

i j
m

h i j
M M

i j
m m

h m Z h m Z
Z Z

h m Z h m Z

ρ =

= =

⋅
=

⋅
   
   
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∑

∑ ∑
  (5.21) 

The correlation coefficient functions measures the similarity between the patterns 

on a scale from -1 to 1.  A value of 1 indicates perfect correlation, a value of 0 indicates 

uncorrelated and a value of -1 indicates inverse correlation of the two patterns [56].  

Figure 29 (a) illustrates the difficulties in accurately estimating the Zernike coefficient for 

defocus, Z4, in an optical system near focus with only the intensity data due to the high 

correlation between the intensity patterns produced by different amounts of defocus.  In 

contrast, Figure 29 (b) shows that the E-field pattern produced by defocus is only 

perfectly correlated with E-field patterns produced by one with equal amount of defocus 

and the correlation goes down dramatically as a function of the difference in defocus that 

produces the two E-field patterns.  Again in Figure 29 (c) the intensity patterns produced 

by spherical error and defocus are highly correlated, where as the electric field patterns 

are significantly less so as shown in Figure 29 (d).  The lower correlation between the E-

field patterns makes it easier to distinguish between the pattern produced by defocus from 

the pattern produced by spherical error.  The difference in correlation in the E-field space 

versus the intensity space is considered the reason why the electric field estimates of the 

Zernike coefficients differ from the intensity based LS phase retrieval estimates.  Those 

differences enable the algorithm described later in this paper that uses both E-field and 
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intensity estimates of Zernike coefficients iteratively to converge on the correct Zernike 

coefficients. 

 

 

Figure 29. The pair wise correlation between two different (a) intensity patterns, ,hρ  and (b) 
electric field patterns, ,Hρ produced in the image plane by varying the Zernike coefficients for 
defocus, Z4, independently. The pair wise correlation between two different (c) intensity patterns 
and (d) electric field patterns produced in the image plane by varying the Zernike coefficient for 
defocus and spherical error, Z11.  
 

5.2.2 Least Squares Zernike Coefficient Estimation 

  In theory, intensity LS phase retrieval could be accomplished using a grid search 

method to estimate the Zernike coefficients, but because of the number of parameters 

required to form the grid, it becomes computationally challenging [38].  Therefore, direct 

search or gradient search intensity LS methods are used to estimate the Zernike 
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coefficients [60].  However, these search methods can become trapped in local minima, 

but the minima can be escaped by defocusing the optical system [35]. 

The intensity based LS phase retrieval technique uses the modeled PSF, ( ), ,h m W  

from Eq. (5.4) and measured intensity data, ( ) ,d m  of a point source to estimate the 

Zernike coefficients.  The PSF is estimated from the data, ( )ˆ ,h m  using Eq. (5.18) and 

the model PSF is formed as a function of wavefront error using Eqs. (5.1)-(5.4). Then the 

sum of squared errors (SSE), Q, between the modeled and the measured intensity is 

determined by 

 ( ) ( )
2

1

ˆ ˆ( ), , ( ) , .
dM

m
Q h m h m W h m h m W

=

   = −   ∑   (5.22) 

To minimize the SSE, the intensity LS phase retrieval begins with an initial wavefront,  

,oldW  where 

 ( ) ( )1 2 2 1 11 11 1( ) ... ,oldW u Z u Z uφ φ= ⋅ + + ⋅   (5.23) 

which for the application of focus and alignment of three mirror telescopes can be limited 

to only Zernike terms 2-11 [17].  The wavefront is adjusted by adding or subtracting 

scaled Zernike polynomials such that new wavefronts are formed 
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   (5.24) 

where Z∆  is the scale factor that determines how fine of an increment will be searched.  

Each new wavefront error results in the following new modeled PSFs  
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The 20 new PSFs in Eqs. (5.25) are each substituted into Eq. (5.22) to form a vector of 

SSE values 
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The wavefront error that generates the minimum SSE value in Q


 becomes the initial 

wavefront error, 1( ),oldW u  for the next iteration and this direct search process continues 

until the wavefront error reaches local minima [60].  Since the Zernike coefficients are 

used to form each new wavefront error they are known when the algorithm ends. 

 

5.2.3 E-Field Zernike Coefficient Estimation 

The Zernike estimation method using the estimated electric field is very similar to 

the intensity based least squares method described in the last section.  An estimation of 

the PSF from the data, ( )ˆ ,h m  is input into the GS algorithm to estimate the electric field, 
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( )ˆ ,H m  as described in Section 2.2.2.  The correlation between ( )Ĥ m and the modeled 

electric field, ( ), ,H m W  is found as 

 ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )
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1 1

2 2
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1 1
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Again, the model wavefronts are formed by adding or subtracting scaled Zernike 

polynomials using Eq. (5.24) and the resulting E-field models are 
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  (5.28) 

The 20 new electric field models from Eqs. (5.28) are each substituted into Eq. (5.27) to 

form a vector of correlation values   
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The wavefront error that corresponds to the maximum correlation value in ρ   

becomes the initial wavefront error for the next iteration and this direct search process 

continues until the wavefront error reaches a local maxima.  The accuracy of the 

estimated Zernike coefficients depends on how the algorithm is initialized for two 
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reasons.  The first reason is that the E-field is estimated using GS and not a measured E-

field.  The second reason is that the method of direct search is used, which can suffer 

from getting trapped in local maxima.  The next section discusses an iterative process that 

prevents the new E-field based phase retrieval algorithm from estimating the wrong 

Zernike coefficients by using both the intensity based LS and E-field correlation direct 

search methods together. 

 

5.2.4 New Phase Retrieval Algorithm 

The new phase retrieval algorithm involves an iterative process that includes the 

E-field estimation from the data, E-field based Zernike coefficient estimation, and direct 

search LS Zernike coefficient estimation as depicted in Figure 30.  The PSF is estimated 

from a 128 by 128 pixel window of the intensity data using the EM algorithm described 

in Section 5.1.2 and is input into the GS algorithm to estimate the electric field.  The 

estimated electric field is correlated with the models of the electric field to estimate 

Zernike coefficient as described in Section 5.2.3.  The output coefficients become the 

initial conditions for the intensity based LS Zernike coefficient estimation detailed in 

Section 5.2.2.  If the SSE value, Q, is not below the set threshold, a new wavefront error 

is modeled using Eq. (5.1) to reinitialized the GS algorithm.  The process is repeated until 

the SSE is less than 10-4 which produces accurate estimates of the Zernike coefficients in 

simulation and is achieved.  
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Figure 30. Block diagram new electric field based phase retrieval algorithm for estimating 
Zernike coefficients. 

 

5.2.5 Phase Retrieval Simulation 

A comparison of the performance of the new phase retrieval algorithm and only 

the intensity based LS subroutine were simulated to illustrate the performance advantages 

of the new method.  The following intensity model is used to simulate data  

 ( ) ( ), , ( ),d m W h m W B n mθ= ⋅ + +   (5.30) 

where d(m,W) is Poisson distributed, θ is the number of photons in the point source, B is 

the flat background noise, and n(m) is added noise.  From the data, estimates of the point 

source intensities were made by using Eq. (5.7) and background was found with Eq.(5.6).  

The EM algorithm then was used to estimate the PSF.  

A sample of simulated inputs and outputs of both the new electric field based 

phase retrieval method and the intensity based LS phase retrieval algorithm are shown in 
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Figure 31.  The input wavefront error, W, shown in Figure 31 (a) was generated setting 

all the Zernike coefficients Z4-Z11 equal to one.  The simulated data from W is shown in 

Figure 31 (b) and was generated by adding a 100 photon background, a 104 photon 

source, and shot noise using Eq. (5.30).  An image of the phase retrieved model of the 

electric field, H(m,W) shown in Figure 31 (d), illustrates the how the pattern differs from 

that of the phase retrieved PSF, h(m,W), shown in Figure 31 (e).  A comparison of the 

phase screens of wavefront error in the pupil in Figure 31 (a), (c), and (f) illustrates the 

improved accuracy of the new electric field based phase retrieval algorithm over just 

using the intensity based direct search LS algorithm.  Likewise, by comparing the PSF 

determined with the new electric field based phase retrieval algorithm, Figure 31 (e), and 

only the intensity based direct search LS algorithm, Figure 31 (g), with the simulated data 

in Figure 31 (b) it is evident that the new algorithm is performing better by escaping the 

local minima/maxima.  
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Figure 31. Phase retrieval simulation examples (a) input wavefront in pupil (b) simulated data in 
image plane (c) estimated wavefront error in pupil using new electric field based phase retrieval 
algorithm (d) real part of the electric field pattern in image plane determined using new electric 
field based phase retrieval algorithm (e) PSF in image plane determined using new electric field 
based phase retrieval algorithm (f) estimated wavefront error in pupil using only the intensity 
based direct search LS algorithm (g) PSF in image plane determined using only the intensity 
based direct search LS algorithm. 

 

To evaluate the performance of the phase retrieval algorithm, 100 combinations of 

random low order Zernike coefficients were used to produce the simulated wavefront 

error where 

 [ ]2 3 11 ( 1,1),Z Z Z unif= −   (5.31) 

where the unif function is the uniform distribution. Each of the randomly generated 

wavefront errors has an associated an intensity model that has noise added to produce 100 

trials, T, of data using Eq. (5.30).  The Zernike coefficients are estimated using both the 
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intensity based direct search LS algorithm and the new electric field based phase retrieval 

algorithm starting with the Zernike coefficients initialized to zero.  The results of each 

algorithm’s Zernike coefficient estimates, ˆ ,iZ  are plotted in Figure 32 and are in terms of 

the difference, Δ, between the absolute value input of the known Zernike, ,iZ  and the 

average estimated Zernike coefficients  

 { }

100

1

ˆ
where 4,...,11 .

100

i
T

i

Z
Z i=∆ = − ∈

∑
  (5.32) 

The mean Δ is computed for all the random combinations, C, of Zernike coefficients used 

to form the simulated wavefront error  
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C
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∆
∆ =

∑
  (5.33) 

and the standard deviation of Δ is  

 ( )
1

100 2
2

1

100 .STD C Mean
C=

  ∆ = ∆ − ∆   
∑   (5.34) 
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Figure 32. Difference between the Zernike coefficients, Zi, simulated and phased retrieved using 
(a) only the intensity based direct search LS algorithm versus new electric field based phase 
retrieval algorithm and (b) expanded plot of new electric field based phase retrieval algorithm 
results.  The error bars corresponded to the standard deviation of Δ are computed via Eq (5.34). 
 

Using only the intensity based direct search LS algorithm produced the biased 

estimates of the Zernike coefficients due to the problem of getting trapped in local 

minima as shown in Figure 32 (a).   In contrast, the estimates of the Zernike coefficients 

using the new electric field based phase retrieval algorithm expanded on the plot in 

Figure 32 (b) are relatively unbiased because the local minima are avoided due to the 

iterative process outlined in Section 5.2.4. 

 

5.3 Laboratory Demonstrations 

To investigate the performance of the phase retrieval algorithm on measured data 

two different controlled aberrations were generated in the laboratory.  The first was 
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defocus, which is simple to generate, control and quantify by moving the image plane 

with respect to the detector.  The second was astigmatism generated by tilting the lens 

with respect to the optic axis which demonstrates performance on another aberration but 

is more difficult to control. 

 

5.3.1 Defocus 

The defocus demonstration used the setup depicted in Figure 33.  The object, O, 

was formed by a LED with a wavelength, λ, of 648 nm illuminating a 200 µm pinhole.  

The object is imaged by a single lens with a focal length, ,f  of 17.5 cm.  The focused 

image was formed in image space according to the thin lens equation [5] 

 
1 1 1 ,

I Of S S
= +   (5.35) 

where OS  is the distance from pin hole to the aperture and IS  is the image location. The 

aperture is defined by an aperture stop with diameter, D, of 3.62 mm to ensure that the 

Nyquist sampling was achieved with the 16 µm pixel pitch of the camera’s detector. 
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                                                   Figure 33. Defocus demonstration setup. 
 

Defocus was generated by shifting the lens mounted on a translation stage in 

order to defocus the image by creating a distance between the image location and the 

detector distance, ,DS  from the lens 

 ,Focus I DS S∆ = −   (5.36) 

according to Table 4.  

 

                                          Table 4. Defocus Demonstration Parameters 

So (cm) Si (cm) ΔFocus (cm) 

188.2 19.8 -0.5 

189.2 19.3 0 

190.2 18.8 0.5 

191.2 18.3 1 

192.2 17.8 1.5 
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The theoretical wavefront error that was generated from these shifts is computed and 

decomposed into the Zernike coefficients, Z2-Z11 [31].  

Figure 34 summarizes the results of the defocus demonstration.  The first column 

is the measured shift in the lens, which is equal to the focus.  The second column is that 

intensity data that was recorded by the camera corresponding to the lens position.  As 

expected with more defocus, the data becomes spread out.  The PSF column shows the 

data after it is blind deconcolved from the pin hole object to produce the PSF, since the 

pinhole was not small enough to represent a true point source [16].  The blind 

deconvolution is achieved through a two-step process. First the blurred image of the 

pinhole is estimated using the EM algorithm presented in Section 5.1.2.  This has the 

effect of producing a background removed image of the pinhole convolved with the point 

spread function.  Then Schulz’s blind deconvolution algorithm (BDA) estimated the 

pinhole shape and the point spread function.  A circular function is used to initialize the 

image estimate and phase function and two waves of defocus are used to initialize the 

filed in the pupil.  The pupil transmittance function is circular with a diameter of 3.62 

mm [57].  An initial estimate of the pinhole size is input into the BDA, in terms of the 

number of pixels in object space, along with the normalized data output from the EM 

algorithm.  The BDA is run for 100 iterations in which it converges on a stable estimate 

of the size and shape of the pinhole while simultaneously estimating the PSF.  Phase 

retrieval is conducted on the PSF to estimate Zernike coefficients (Z2-Z11) and produce 

the modeled PSF.  The estimated coefficient for defocus is listed next to the theoretical 

value that is computed using the wave optics calculations discussed in the appendix.  The 

small difference between the theoretical value for Z4 and the estimate are within the 
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combined error of our lens translation stage accuracy of ~1 mm and the estimate error 

from noise.  One important point to note is that only defocus is experimentally generated, 

but the phase retrieval algorithm attempted to estimate 10 different Zernike coefficients, 

yet it still correctly attributed the wavefront error to the aberration of defocus. 

 

 

                                         Figure 34. Results of defocus demonstration. 
 

 

5.3.2 Astigmatism 

The Astigmatism demonstration uses the set up depicted in Figure 35.  The object, 

O, is formed with the same pinhole and LED as the defocus demonstration by a lens with 
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a focal length,  f, of 50.0 cm.  The camera detector is placed at SI and the lens is tilted with 

respect to the optic axis in order to generate astigmatism. 

 

 
                                               
                                    Figure 35. Astigmatism demonstration setup. 

 

Figure 36 shows the results of the astigmatism demonstration.  The first column is 

the camera recorded data taken in and out of focus. The data is processed with the blind 

deconvolution algorithm to as with the defocus experiment produce the PSF column 

Figure 36 (b), (e), and (h).  Then the Zernike model is phase retrieved from the focused 

PSF in Figure 36 (b).  The Zernike model for the defocus spots in Figure 36 (f) and (i) are 

formed by using the model terms Z5-Z11 from the phase retrieval of the focus spot and 

then fit using Z2-Z4 as free parameters.  Comparison of the PSF in Figure 36 (e) and (h) 

to the modeled PSF in Figure 36 (f) and (i) illustrates that an accurate amount of 

astigmatism in the optical system is phase retrieved from the focused spot.  
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                                            Figure 36. Astigmatism demonstration results. 
 

Table 5 lists the Zernike coefficients (Z5-Z11) that are retrieved from the focused 

PSF shown in Figure 36 (b).  The coefficients are used to produce the model displayed as 

color maps in Figure 36 (c), (f) and (i).  Note that the astigmatism term, Z6, quantifies the 

estimated amount of astigmatism generated in the tilted lens demonstration.  The in-

focus, negative-focus, and positive-focus columns correspond to the position of the CCD 

relative to focus and the resulting value of the phase retrieved Zernike coefficient for 

defocus.  The theoretical column is computed using the wave optics calculations 

discussed in the appendix and tilting the lens at an angle of 7.2 deg.  As predicted by 
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theory, tilting the lens generates a measurable amount of astigmatism and the new phase 

retrieval method is able to quantify that aberration while jointly estimating the other 

parameters at focus.  The small biases of some of the estimated Zernike coefficients from 

the theoretical values (<0.15 waves) listed in Table 5 are likely due to noise in the data. 

 

                        Table 5. Astigmatism Demonstration Zernike Coefficient Estimates 
Zernike 

Coefficient 
In-

Focus 
Negative-

Focus 
Positive-

Focus 
In-Focus 
Theory 

Z4 0 -4.6 3.9 0 

Z5 0.15 0.15 0.15 0 

Z6 -0.8 -0.8 -0.8 -0.8 

Z7 -0.05 -0.05 -0.05 0.1 

Z8 -0.1 -0.1 -0.1 0 

Z9 0.05 0.05 0.05 0 

Z10 0 0 0 0 

Z11 -0.1 -0.1 -0.1 0 
 

 

5.4 Conclusions 

The iterative use of three different phase retrieval techniques: Gerchberg-Saxton, 

estimated electric field correlation, and intensity LS produces accurate estimates of the 

magnitude of low order Zernike coefficients of an optical system from focused point 

source images.  Each of these algorithms can estimate the Zernike coefficients alone, but 

have demonstrated biases that are related to how they are initialized.  By using the three 

methods together, the need to guess the starting wavefront error has not been necessary 

for the algorithm to accurately estimate the Zernike coefficients.  In addition, with this 
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approach the limitations posed by the wrapped 2-D phase produced by the GS algorithm 

are avoided.  Differences in the electric field pattern and intensity pattern enable the 

algorithm to escape from local minima/maxima and converge on the correct solution.  

Simulations and laboratory results demonstrate the performance of the algorithm.   

In the future, the new iterative algorithm could potentially be improved.  One 

concept is to use other optical constraints on the GS portion of the algorithm (like in the 

hybrid input output algorithm) to improve Zernike estimates and decrease convergence 

time [61].  Another idea is to use a gradient search method (such as the Levine Marquette 

method) to speed up the LS portion of the algorithm. 

The ability to accurately estimate the Zernike coefficients while the optics are 

near focus should be useful in the alignment of large three mirror telescopes like the SST 

and LSST because the aberration will not be reintroduced from movements of the 

secondary and tertiary mirrors required for focusing.  Using this phase retrieval method 

for JWST would simplify their optical design and reduce engineering risk by removing 

the need for different focal length lenses to generate different defocus values for focus-

diverse phase retrieval [45, 47, 48].  In addition, the new phase retrieval algorithm 

proposed in this chapter has the advantage over NASA’s hybrid diversity algorithm 

(HDA) planned for use on JWST because the HDA uses not only phase diversity but also 

has to unwrap the pupil phase as its estimates are based on the phase output from GS 

[47]. 
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VI. Conclusions 
 

 Substantial efforts have been made by astronomers to maximize the ability to 

detect space objects with optical telescopes, but there is a continued need to optimize the 

process for both military and scientific applications.  Improved image processing affords 

a way to improve space object detection without the need to invest in more costly 

hardware like space based telescopes or larger aperture ground based telescopes. An 

evaluation of current image processing techniques was conducted to identify how the 

SST’s image data could be better processed.  The two areas uncovered were phase 

retrieval methods and detection algorithms, which are summarized respectively in 

Section 2.2 and Section 2.4.   

A thorough literature review of existing phase retrieval techniques and detectors 

available for use on the SST are summarized in Section 2.5.  The primary limitation of 

present phase retrieval techniques is that they require phase diversity that is typically 

induced by defocusing the telescope as discussed in Section 2.2.   Defocusing the 

telescope is undesirable because of complicated defocusing and alignment procedures of 

three mirror telescopes.  In terms of detection improvement, one possible detection 

algorithm identified in literature that could be implemented on the SST in place of its 

baseline point detector is the correlator discussed in Section 2.4.   However, previous 

AFIT research has shown that the correlator suffers from aliasing when the data is 

undersampled [43].   

The image processing techniques that were developed in the pursuit of this 

research have demonstrated the potential to improve the SST in terms of its system 

performance metrics described in Section 1.1 including: metric accuracy, photometric 
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accuracy, and sensitivity.  The new phase retrieval techniques that produce low bias 

estimates of telescope aberrations in terms of Zernike polynomials are illustrated in 

Figures 18 and 32. Based on the results shown, they could improve the focus and 

alignment of the SST, which would provide immediate improvement in the telescope’s 

sensitivity by reducing the FWHM of its PSF.  Even more noteworthy, the MHT has 

superior properties that could be used as the kernel of an entirely new image processing 

scheme that would significantly outperform the baseline algorithm.  One of those 

properties is sub-pixel position information that should improve metric accuracy as 

described in Section 4.6.  Another property of the MHT is the linear relation between its 

SNR output and estimates of the object’s brightness, which has demonstrated improved 

photometric accuracy over the baseline detector as shown in Figure 27.  The most 

significant improvement in telescope performance accomplished with the MHT over the 

exiting software comes from detection sensitivity gains as illustrated in the GEO eclipse 

experimental analysis results plotted in Figure 26.  

 

6.1 Long Exposure Phase Retrieval Improvements 

Increased understanding of the long exposure phase retrieval problem and better 

ways to perform it have been developed in this work.  One fresh insight is that the 

presence of a long exposure atmosphere affects the CRLB for Zernike coefficients and 

that the bound helps predict phase retrieval performance.  As shown in Figure 12, the 

long exposure atmosphere increases the CRLB for Zernike coefficient for defocus.  

Additionally, Figure 16 shows that the bound predicts the general trend of phase retrieval 

performance for estimates of the defocus parameter. Another key phase retrieval finding 
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is that unbiased estimates of Zernike coefficients in the presence of an atmosphere can be 

made without requiring a defocused spot to generate phase diversity.  Chapter III 

describes a grid search method that can produce unbiased estimates of spherical and 

defocus coefficients in the presence of a long exposure atmosphere as seen in Figure 18.   

In the long exposure atmospheric case, the limitations of differentiating between 

the contribution of telescope aberrations and atmospheric blurring to the intensity pattern 

are overcome by jointly estimating the atmospheric seeing parameter and Zernike 

coefficients using Eq. (3.38).  The method works because it uses a grid search method to 

select from a library of possible PSFs to find the PSF that best matches the measured 

intensity pattern.  The selected PSF corresponds to specific Zernike coefficients and 

seeing parameter values.  This method is useful when there are a small number of 

coefficients that need to be estimated.  This is the case for the SST because Z5-Z11 were 

previously estimated using a phase diversity techniques and only r0 and Z4 need to be 

estimated near focus in order to build the PSF model used in the MHT (see Section 4.4).   

 

6.2 Telescope Detection Improvements  

  The implementation of a MHT by the SST will increase its probability of 

detecting space objects over the baseline detector through three improvements: using 

multiple pixels to compute SNR, mitigating aliasing effects, and computing more 

accurate window statistics.  The MHT mitigates the combined effects of atmospheric 

blurring and telescope aberrations that cause point source light to spread across multiple 

pixels.  This is done by including the PSF in the MHT through Eq. (4.13), which 

computes higher SNR values than the baseline detector because the point detector only 
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uses one pixel to compute SNR through Eq. (2.32).  In addition, since the SST’s data is 

undersampled, the measured PSF changes shape when the light is not centered on a pixel 

and the MHT is able to mitigate the aliasing effects that degrade the performance of both 

the correlator and the baseline detector.  This is accomplished by shifting position on the 

Nyquist grid as discussed in Section 4.4.  In addition, the computation of the noise 

statistics in the window surrounding the pixel being tested is skewed by stars crossing, 

cosmic radiation and bad pixels.  However, by removing outlier pixel data, more accurate 

standard deviations are computed and used in the MHT as discussed in Section 4.5.  By 

combining these improvements into the MHT through Eq. (4.13) and Eq. (4.18), the 

MHT demonstrates improvement in Pd of over 50% over the baseline detector based on 

the data collected in the ANIK-F1 GEO eclipse experiment as shown in Figure 26.   

 

6.3 Short Exposure Phase Retrieval Improvements 

In future the SST sites, Zernike coefficients may not be estimable with the 

currently used phase diversity techniques due to poor atmospheric seeing condition or 

because defocusing the telescope may be undesirable.  Unfortunately, the long exposure 

phase retrieval method is too computationally burdensome for estimating large numbers 

of Zernike coefficients.  However, if the SST upgrades to a frame transfer camera, the 

phase retrieval algorithm described in chapter V can produce unbiased estimates of 

Zernike coefficients (Z4-Z11) in the presence of the short exposure atmosphere as shown 

in Figure 32.    

The primary improvement of the short exposure phase retrieval for Zernike 

coefficients over existing methods is that it does not require defocusing of the telescope 
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in order to estimate coefficients thus making it a useful new tool for optical diagnostics.  

The short exposure phase retrieval of Zernike coefficients from a focused telescope point 

source intensity pattern using only an intensity based least squares direct search approach 

is challenging because of the correlation between intensity patterns produced by different 

aberrations as illustrated in Figures 29 (a) and (c).  In contrast, the electric field patterns 

produced by the same aberrations are much less correlated as shown in Figures 29 (b) and 

(d).  Therefore, by using an estimated electric field in conjunction with the intensity 

pattern, the new short exposure phase retrieval algorithm is able to produced nearly 

unbiased estimates of the Zernike coefficients from both simulated and experimental data 

as discussed in Sections 5.2-5.3.  

 

6.4 Future Work 

While significant strides have been made to enhance the performance of the SST 

and other astronomical telescopes, many other interesting and relevant questions that 

could be answered in future research have been uncovered including:  Is it better to use 

the long or short exposure atmospheric model for phase retrieval of Zernike coefficients?  

How does the MHT perform as a function of atmospheric seeing?  How often should 

phase retrieval be conducted to mitigate seeing effects on the detection performance of 

the MHT?  How much degradation in MHT performance results from the changes in PSF 

shape?  What is the range of PSF shapes that can be tolerated?  How much does the 

performance of the correlation based BHT depend on the PSF shape?  How is the 

performance of the MHT affected by variations in the PSF across the FOV?  Will 

multiple PSF shapes be used for different positions on the field?  If not, what is the 
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degradation in performance if a single PSF is used for the field?  By addressing these 

questions even better detection performance may be achieve with SST. 

 

6.5 Final Observations 

 Investigating how to improve image processing for space object detection has 

been a fruitful area of research and a productive means of enhancing ground based 

telescope performance.  While better ways for phase retrieval and detection have been 

identified in this dissertation, it has also opened up an entire new area for future research 

as outlined with the questions in the previous section.  Continued pursuit to answer these 

questions and the new ones that are certain to arise should be productive both from 

academic and DoD points of view.  This is because further enhancement to image 

processing of the SST and other telescopes contributing to the space surveillance network 

has the potential to enhance the United States’ SSA capabilities. 
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VII. Appendices 
Equation Chapter (Next) Section 7 

 The following three sections provide addition supporting evidence for the validity 

of the phase retrieval performance described in Chapters III and IV.  The first two 

sections provide empirical evidence that the SST star data used for phase retrieval is 

modeled with an appropriate cumulative distribution function (CDF) and that the pixels 

can be considered statistically independent.  The last section covers the method by which 

the theoretical Zernike coefficients for the aberrations produced in the lens experiment 

described in Chapter IV were computed. 

 

A.1 The SST’s CCD Noise Statistics  

Raw measurements of digital counts were recorded from a star observed with the 

SST over multiple frames.  An empirical quantile-quantile (Q-Q) plot of the data from the 

pixel the star was centered on versus a Poisson probability mass function (PMF) with the 

same mean as the star intensity is shown in Figure 37 (a) [62].  By inspecting the plot it 

appears that the Poisson PMF is not an ideal match for the data because an excellent fit 

would have the blue data marker on the red line formed by the ideal distribution.  One 

possibility for the disparity between the data distribution and the Poisson PMF is that the 

data is quantized.   

 Quantization noise occurs in the analog-to-digital conversion process from 

photons received to digital counts if it is not a one-to-one conversion.  The gain, G, that 

converts between the total number photons received in a pixel and expected digital count 

is represented by 
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 [ ] 1( ) ( ) ,
x

E d m G h m x Bθ = − +  
∑   (7.1) 

where, ( )E d m   is the mean number of digital counts in the pixel of interest, m; 1θ  is the 

intensity of the space object, x is the pixel coordinates in the window of interest; 

( )h m x− is the PSF and B is the background.  The mean number of photons incident on 

a pixel  

( ) 1 ( ) .
x

E d m h m x Bθ′ = − +   ∑    (7.2) 

Since gain is a constant, the relation between the digital counts and the photon incented 

on a pixel, ( ) ,d m′  is  

( ) ( ).d m Gd m′=     (7.3) 

Shot noise is caused by the fact the independent photon arrival times on the CCD 

for each pixel in the image can be considered a collection of Poisson random variables 

(RV), therefore ( )d m′ has a Poisson PMF [2].  If quantization noise and shot noise are 

the dominate noises in ( ) ,d m  then ( )d m G  will also have a closer match to Poisson 

statistics.   

To characterize the CCD and determine G from the imagery data, the following 

derivation is used.  For a given pixel the mean number of digital counts is 

( ) ( ) ,d E d m GE d m′= =         (7.4) 

and the second moment is 
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   (7.5) 

In addition, 

( ) ( )( ) ( )22 2 2 .E d m E Gd m G E d m ′ ′   = =          (7.6) 

Substituting Eq. (7.6) and Eq. (7.4) into Eq. (7.5)  

( ) ( ) ( )

( ) ( ){ }
( )

2 2 2 2 2 2

2 2 2

2 ' .

E d m d G E d m G E d m

G E d m E d m

G E d m

′ ′   − = −      

′ ′ = −    

=   

   (7.7) 

because for a Poisson random variable (RV) the mean is equal to the variance.  

Therefore, G can be estimated from the data by dividing Eq. (7.7) by Eq. (7.4)  

( )
( )

( )
( )

2 2 2

.
E d m d G E d m

G
E d m GE d m

  − ′    = =
′      

   (7.8) 

Using star data from the SST the gain was estimated to be 3.G =  

The gain estimate was used to remove the quantization effect from the raw data 

shown in Figure 37 (a) to produce the adjusted Q-Q plot in Figure 37 (b).  The plot shows 

that the data with quantization noise removed is better modeled with the Poisson PMF, 

because the magnitude of the offsets of the blue data points from the ideal distribution 

indicated by the red line are significantly reduced.  This analysis provides a measure of 

confidence that the Poisson PMF should be used for the derivation of the LRT detectors 

and CRLB for estimates of Zernike polynomial coefficients.  
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Figure 37. Q-Q Plot of star data from the SST images versus a Poisson distribution (a) raw data 
(b) Corrected for quantization  
 

A.2 The SST’s CCD Pixel Independence 

The same star data used to characterize the SST’s CCD noise statistics is used to 

evaluate the independence of the data in each pixel.  The Spearman coefficient of rank 

correlation, ,ρ  was used find the correlation between the pixel that the star was centered 

on and the adjacent pixels as shown in Figure 38 [62].  For the pixels evaluated, ρ was 

much closer to 0 than to 1 or -1 indicating that the pixels are independent.  Furthermore, 

the p-value is larger than 0.1 in all four cases indicating that the correlation is 

significantly different from 1. 
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                            Figure 38. Correlation between a star’s center pixel and adjacent pixels 
 

A.3 Aberration Calculations for a Single Lens 

The aberrations produced by a single lens are calculated using a wave optics 

approach to verify the accuracy of the phase retrieval results in the laboratory 

demonstrations presented in this paper.  The point source is assumed to generate a 

spherical wavefront that is propagated to the lens.  The lens introduces a quadratic phase 

transformation and then the spherical wavefront is propagated to the image plane [31].  

The combined wavefront error from the two propagations and the lens transformation are 
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summed up in the pupil and then decomposed into scaled Zernike polynomials to 

determine the theoretical Zernike coefficients. 

The wave optics simulation input values are the object and image plane distances 

from the lens, IS and OS , the focal length of the lens, f, the wavelength of light, λ, and 

the diameter of the entrance pupil, D.  Then the magnification by the lens, M, is 

computed as [30] 

.I

O

SM
S

= −       (7.9) 

Two variables are used, one is the amount of displacement the object from the optic axis, 

,y∆  and the other the is distance the camera is from image plane, .z∆    

The wave optics simulation beings with the generation of a 1024 by 1024 phase screen, 

such that the pixel size in the pupil, dx, is  

.
1024

Ddx =       (7.10) 

Two 1024 by1024 matrices of the x and y coordinates are generated, x  and y , and are 

set such that the center pixel in the grid has coordinate (0,0) and have the pupil spacing of 

dx.  With the phase screens set up, the object is modeled as a spherical wave, 1,W  

propagated from the object plane to the lens using the following distance formula [3] 

( )
1

2 2
2

1 2 .OW y y Sπ λ = ⋅ ⋅ − ∆ + 
 

   (7.11) 

To compute the lens transformation, the radius of the pupil, ,r is computed as a function 

of pixel coordinates  

( )
1

22 2 ,r x y= +      (7.12) 
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and the quadratic phase factor for the lens, ,Λ  is computed as  

2

.
r
f

π
λ

− ⋅
Λ =

⋅
      (7.13) 

Next the wavefront error caused by propagation from the lens to image location in image 

plane, 2,W  is computed using the distance formula  

( ) ( )
1

2 22
2 2 .IW y M y S zπ λ = ⋅ ⋅ − ⋅ ∆ + − ∆ 

 
   (7.14) 

The total wavefront in the pupil, ,TW  is the linear combination of the wavefront error 

from each of the propagations and the lens transformation 

1 2.TW W W= + Λ +      (7.15) 

Finally, the total wavefront is decomposed to determine the each of the Zernike 

coefficients, ,iZ   the using the orthogonality of the each Zernike polynomials, ,iφ   such 

that 

( ).i i TZ Wφ= ⋅∑∑      (7.16) 

 

 

 

  



126 
 

Bibliography 

[1]  T. Blake, "DARPA Web Site," Tactical Technology Office, 26 Jun 2013. [Online]. 
Available: 
http://www.darpa.mil/Our_Work/TTO/Programs/Space_Surveillance_Telescope_(SS
T).aspx. [Accessed 26 Jun 2013]. 

[2]  BAE Systems, "Unique search and track procedures utilizing the Ground-based 
Electro-Optical Deep Space Surveillance (GEODSS) worldwide sites," in Advanced 
Maui Optical and Space Surveillance Technologies Conference, Maui, 2012.  

[3]  D. Monet, T. Axelrod, C. Claver, T. Blake, R. Lupton, E. Pearce, R. Shaw and D. 
Woods, "Rapid Cadence Collections with the Space Surveillance Telescope," in 
AMOS, Maui, 2012.  

[4]  Office of the President of the United States of America, "NATIONAL SPACE 
POLICY of the UNITED STATES of AMERICA," United States Government, 
Washington DC, 2010. 

[5]  R. Sridharan and A. F. Pensa, "U.S. Space Surveillance Network capabilities," in 
Proc. SPIE 3434, Image Intensifiers and Applications; and Characteristics and 
Consequences of Space Debris and Near-Earth Objects, San Diego, 1998.  

[6]  M. M. Morton and T. Roberts, "Joint Space Operations Center (JSpOC) Mission 
System (JMS)," in Advanced Maui Optical and Space Surveillance Technologies 
Conference, Maui, 2011.  

[7]  R. F. Colarco, "Space Surveillance Network Sensor Development, Modification, and 
Sustainment," in Advance Maui Optical and Space Surveillance Technologies 
Conference, Maui, 2009.  

[8]  United Nations Committee on the Peaceful uses of Outer Space, "Technical Report on 
Space Debris," United Nations, New York, 1999. 

[9]  U. S. 1. Congress, "Public Law 109–155," United States Government, 2005. 

[10]  National Aeronautics and Space Administration, "NEO Discovery Statistics," 
[Online]. Available: http://neo.jpl.nasa.gov/stats/. [Accessed 26 July 2011]. 

[11]  R. Grant, "Vulnerability in Space," Air Force Magazine, vol. 91, no. 6, 2008.  

[12]  E. Stansbery, "Orbital Debris Program Office," NASA, 02 October 2012. [Online]. 
Available: http://orbitaldebris.jsc.nasa.gov/photogallery/beehives.html#geo. 
[Accessed 26 June 2013]. 

[13]  R. V. Willstrop, "The Mersenne--Schmidt: a three-mirror survey telescope," Royal 
Astronomical Society, vol. 210, pp. 597-609, 1984.  

[14]  G. Stokes, Interviewee, Requirements Trace for the SST. [Interview]. 12 Sept 2012. 

 



127 
 

[15]  DARPA, "Space Surveillance Telescope (SST) Phase I System Test Procedures," US 
Government, Washington DC, 2011. 

[16]  S. Maksim, J. Zingarelli and S. Cain, "A Comparison Between a Non-linear, Poisson-
based Statistical Detector and a Linear, Gaussian Statistical Detector for Detecting 
Dim Satellites," in Advanced Maui Optical and Space Surveillance Technologies 
Conference, Maui, 2012.  

[17]  D. Woods, "The Space Surveillance Telescope: Focus and Alignment of a Three 
Mirror Telescope," in Advanced Maui Optical and Space Surveillence Technologies 
Conference, Maui, 2012.  

[18]  J. C. Zingarelli, T. Blake and S. Cain, "Improving Ground Based Telescope Focus 
through Joint Parameter Estimation," in Advanced Maui Optical and Space 
Surveillance Technologies Conference, Maui, 2012.  

[19]  T. J. Schulz, W. Sun and M. C. Roggemann, "Cramer-Rao Bounds for estimation of 
turbulence-induced wavefront aberrations," in SPIE Confrence on Propagation and 
Imaging through Atmosphere III, Denver, 1999.  

[20]  J. W. Goodman, Statistical Optics, New York: Wiley Interscience, 1985.  

[21]  LSST Corporation, "Large Synoptic Survey Telescope," 04 06 2011. [Online]. 
Available: http://www.lsst.org/files/docs/overviewV2.0.pdf. [Accessed 03 06 2013]. 

[22]  G. Molesoni, "Galileo’s telescope and the birth of instrumental optics: a review note," 
Applied Optics, vol. 49, no. 16, pp. D1-D5, 2010.  

[23]  N. Miura and K. Itagaki, "Likelihood-base Method for Detecting Faint Moving 
Objects," The Astronomical Journal, pp. 1278-1285, 2005.  

[24]  P. S. Gural, J. A. Larsen and A. E. Gleason, "Matched Filter Processing for Asteroid 
Detection," The Astronomical Journal, pp. 1951-1960, 2005.  

[25]  H. Viggh, G. Stokes, F. Shelly, M. Blythe and J. Stuart, "Applying Electro-Optical 
Space Surveillance Technology to Asteroid Search and Detection: The Linear 
Program Results," in Proceedings of the 1998 Space Control Conference, Lexington, 
1998.  

[26]  E. C. Pearce, F. Shelly and J. A. Johnson, "High Precision Real Time Processing for 
the MOSS and LINEAR Systems," in Space Control Conference, Boston , 2003.  

[27]  N. A. Roddier, "Atmospheric wavefront simulation using Zernike polynomials," 
Optical Engineering, vol. 29, no. 10, pp. 1174-1180, 1990.  

[28]  M. C. Roggemann, Imaging Through Turbulence, CRC Press, 1996.  

[29]  R. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am., vol. 
66, pp. 207-211, 1976, Oct..  



128 
 

[30]  E. Hecht, Optics, Addison Wesley, 1997.  

[31]  J. W. Goodman, Fourier Optics, Greenwood Village, CO: Roberts & Company, 2005.  

[32]  J. Fienup, J. Marron, T. Schulz and J. and Seldin, "Hubble Space Telescope 
characterized by using phase-retrieval algorithms," Applied Optics, vol. 32, no. 10, p. 
17471767, 1993.  

[33]  F. Roddier, "Curvature sensing and compensation: a new concept in adaptive optics," 
APPLIED OPTICS, vol. 27, no. 7, pp. 1223-1225, 1988.  

[34]  R. W. Gerchberg and W. O. Saxton, "A Practical Algorithm for the Determination of 
Phase from Image and Diffraction Plane Pictures," OPTIK, vol. 35, no. 2, pp. 237-
246, 1972.  

[35]  J. E. Krist and C. J. Burrows, "Phase-retrieval analysis of pre- and post-repair Hubble 
Space Telescope images," APPLIED OPTICS, vol. 34, no. 22, pp. 4951-4964, 1995.  

[36]  D. C. Ghiglia and M. D. Pritt, Two-dimensional phase unwrapping theory, algorithms 
and software, Hoboken: Wiley-Interscience, 1998.  

[37]  C. J. Pellizzari and J. D. Schmidt, "Phase unwrapping in the presence of strong 
turbulence," in Aerospace Cinfrence, 2010 IEEE, Big Sky, 2010.  

[38]  S. M. Kay, Fundamentals of Statistical Signal Processing, Upper Saddle River, NJ: 
Prentice-Hall, 2011.  

[39]  P. Hickson, "Wave-front curvature sensing from a single defocused image," Journal 
of the Optical Society of America, vol. 11, no. 5, pp. 1667-1673, 1994.  

[40]  I. Putnam and S. Cain, "Modeling a Temporally Evolving Atmosphere with Zernike 
Polynomials," in Advanced Maui Optical and Space Surveillance Technologies 
Conference, Maui, 2012.  

[41]  "Pan-Starrs," 2005. [Online]. Available: http://pan-starrs.ifa.hawaii.edu/public/. 
[Accessed 02 03 2011]. 

[42]  S. C. Pohlig, "An Algorithm for Detection of Moving Optical Targets," IEEE 
Transactions on Aerospace and Electronic Systems, vol. 25, no. 1, pp. 56-63, 1989.  

[43]  A. O'Dell and S. Cain, "Investigating the Effects of Atmospheric Seeing on the 
Detection of near Earth Orbiting Asteroids," in IEEE Aerospace Conference, 2009.  

[44]  K. P. Thompson, S. Tobias and J. P. Rolland, "The misalignment induced aberrations 
of TMA telescopes," Optics Express, vol. 16, no. 25, pp. 20345-20353 , 2008.  

[45]  B. Dean, "Hybrid diversity method utilizing adaptive diversity function". US Patent 
20080040077 A1, 14 Feb 2008. 

[46]  National Air and Space Administration, "James Webb Space Telescope," National 
Air and Space Administration, 12 08 2013. [Online]. Available: 



129 
 

http://www.jwst.nasa.gov/index.html. [Accessed 13 08 2013]. 

[47]  Space Telescope Institute, "James Webb Space Telescope Wavefront Sensing and 
Control," Space Telescope Institute, [Online]. Available: 
http://www.stsci.edu/jwst/ote/wavefront-sensing-and-control. 

[48]  D. Scott Acton, J. Scott Knight, A. Contos, S. Grimaldi, J. Terry, P. Lightsey and A. 
Barto, "Wavefront Sensing and Controls for the James Webb Space Telescope," in 
Proceedings of SPIE, Amsterdam, 2012.  

[49]  M. Vollmer and S. D. Gedzelman, "Simulating irradiance during lunar eclipse: the 
spherically symmetric case," Applied Optics, vol. 47, pp. 52-61, 2008.  

[50]  F. J. Verba and e. al, "A Survey of Geosynchrinous Satellite Glints," DTIC, Flagstaff, 
2009. 

[51]  J. Anderson and I. R. King, Space Telescope Science Institute, NASA, 2006. 

[52]  R. Schödel, "Accurate photometry with adaptive optics in the presence of 
anisoplanatic effects with a sparsely sampled PSF," Astronomy & Astrophysics, pp. 
1-16, 2010.  

[53]  S. T. Thurman and J. R. Fienup, "Complex pupil retrieval with undersampled data," 
Journal Optical Society of America, pp. 2640-2647, 2009.  

[54]  L. Pinheiro da Silva, M. Auvergne, D. Toublanc, J. Rowe, R. Kuschnig and J. 
Matthews, "Estimation of a super-resolved PSF for the data reduction of 
undersampled stellar observations," Astronomy & Astrophysics, pp. 363-369, 2006.  

[55]  T. R. Lauer, "Combining Undersampled Dithered Images," Astronomical Society of 
the Pacific, pp. 227-237 , 1999.  

[56]  M. Kutner, C. Nachtsheim, J. Neter and W. Li, Applied Linear Statisitcal Models, 
2005.  

[57]  T. J. Schulz, "Multiframe blind deconvolution of astronomical images," J. Optical 
Society of America, vol. 10, no. 5, pp. 1064-1073, 1993.  

[58]  L. Shepp and Y. Vardi, "Maximum Likelihood Reconstruction for Emission 
Tomography," IEEE Transactions on Medical Imaging, Vol. 1, no. 2, pp. 113-122, 
1982.  

[59]  A. Tokovinin and S. Heathcote, "Donut: Measuring Optical Aberrations from a 
Single Extrafocal Image," The Astronomical Society of the Pacific, vol. 118, no. 846, 
pp. 1165-1175, 2006.  

[60]  T. G. Kolda, R. M. Lewis and V. Torczon, "Optimization by Direct Search: New 
Perspectives on Some Classical and Modern Methods," Society for Industrial and 
Applied Mathematics, vol. 45, no. 3, pp. 385-482, 2003.  



130 
 

 
  

[61]  J. R. Fienup, "Phase retrieval algorithms: a personal tour [Invited]," Applied Optics, 
vol. 52, no. 1, pp. 45-56, 2013.  

[62]  P. H. Kvam and B. Vidakovis, Nonparametric Statistics with Applications to Science 
and Engineering, Hoboken: John Wiley & Sons, Inc, 2007.  

 

    



131 
 

REPORT DOCUMENTATION PAGE  Form Approved  
OMB No. 0704–0188  

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or 
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, 
Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware 
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a 
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  
1. REPORT DATE (DD–MM–YYYY)  
13-Nov-2013 

2. REPORT TYPE  
Dissertation 

3. DATES COVERED (From — To) 
Sep 2011 – Dec 2013 

4. TITLE AND SUBTITLE  
ENHANCING GROUND BASED TELESCOPE 

PERFORMANCE WITH IMAGE PROCESSING 
 

5a. CONTRACT NUMBER  
5b. GRANT NUMBER  
5c. PROGRAM ELEMENT NUMBER  

6.  AUTHOR(S) 
 
Zingarelli, John C., Major, USAF 

5d. PROJECT NUMBER  
 
5e. TASK NUMBER  
5f. WORK UNIT NUMBER  

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  
Air Force Institute of Technology  
Graduate School of Engineering and Management (AFIT/ENY) 
2950 Hobson Way  
WPAFB OH 45433-7765  

8. PERFORMING ORGANIZATION REPORT 
NUMBER 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)  
 
 
Defense Advance Project Research Agency 

10. SPONSOR/MONITOR’S ACRONYM(S)  
DARPA 
11. SPONSOR/MONITOR’S REPORT 
NUMBER(S)  

12. DISTRIBUTION / AVAILABILITY STATEMENT  
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED  
13. SUPPLEMENTARY NOTES      This material is declared a work of the U.S. Government and is not subject to 
copyright protection in the United States. 
14. ABSTRACT  
The Space Surveillance Telescope (SST) is a Defense Advanced Research Projects Agency (DARPA) program 
designed to detect objects in space like Near Earth Asteroids (NEAs) and space debris in the Geosynchronous 
Earth Orbit (GEO) belt.  Binary hypothesis tests (BHTs) have historically been used to facilitate the detection of 
new objects in space.  In this dissertation, a multi-hypothesis test (MHT) detection strategy is introduced to 
improve the detection performance of the SST.  In this context, the MHT determines if an unresolvable point 
source is in the center, corner or  side of a pixel in contrast to a BHT, which only tests whether an object is in the 
pixel or not.  An experiment, recording observations of a known GEO satellite as it enters eclipse, is used to 
demonstrate improved probability of detection with the MHT by as much as 50% over existing BHT methods.  
In order to achieve optimal performance of the SST, alignment of the telescope is conducted by retrieving phase 
information from defocused point sources to determine the telescope’s aberrations and then the mirrors are 
moved for optical correction.  A new direct search phase retrieval technique for determining the optical 
prescription of an imaging system in terms of Zernike coefficients is described.  The technique provides 
coefficient estimates without the need to defocus point source images to generate phase diversity by using 
electric field estimates in addition to intensity data.  Simulated point source data shows the new phase retrieval 
algorithm avoids getting trapped in local minima over a wide range of random aberrations.  Experimental point 
source data are used to demonstrate the phase retrieval effectiveness. 
15. SUBJECT TERMS 
Atmospheric effects — Methods: data analysis — Methods: statistical — Methods: 
numerical — Techniques: image processing 
16. SECURITY CLASSIFICATION OF:  17. LIMITATION 

OF ABSTRACT  
 
UU  
 

18. NUMBER 
OF PAGES  
 
 142 
 

19a. NAME OF RESPONSIBLE PERSON 
Dr. Stephen Cain 

a. 
REPORT 
 
U 

b. 
ABSTRACT 
 
U 

c. THIS 
PAGE 
 
U 

19b. TELEPHONE NUMBER (Include Area Code) 
(937)255-3636, ext 4716 stephen.cain@afit.edu 

 
Standard Form 298 (Rev. 8–98)   
Prescribed by ANSI Std. Z39.18 


	AFIT-ENG-DS-13-D-04
	AFIT-ENG-DS-13-D-04
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	I.  Introduction
	1.1 Motivation
	1.2 Accomplished Work

	II. Background
	2.1 Telescope Model
	2.1.1  Zernike Polynomial for Defocus
	2.1.2  Zernike Polynomials and the Generalized Pupil Function
	2.1.3 Intensity Model and PSF Estimation

	2.2 Phase Retrieval from Stellar Images
	2.2.1 CRLB for Zernike Coefficients
	2.2.2 Least Squares and Gerchberg-Saxton Phase Retrieval
	2.2.3 Curvature Sensing

	2.3 Atmospheric Models
	2.3.1 Long Exposure Atmosphere
	2.3.2 Short Exposure Atmosphere

	2.4 Detectors
	2.4.1 Point Detection
	2.4.2 Correlation versus Point Detection
	2.4.3 Undersampling and Correlation Detection

	2.5 Conclusions

	III. Phase Retrieval with a Long Exposure Atmosphere
	3.1 Telescope Model
	3.2 Cramer-Rao Lower Bounds (CRLB) for Variance
	3.3 Parameter Estimation
	3.4 Phase Retrieval Simulations
	3.5 Laboratory Demonstration
	3.6 Joint Estimation of Spherical Error, Defocus, and Atmospheric Seeing
	3.7 Conclusions

	IV. Improving Detection using Multi-hypothesis Testing
	4.1 Introduction
	4.2  The SST Experimental Description
	4.2.1 Experimental Setup and Process Overview
	4.2.2 The SST System
	4.2.3 The SST Detection Process

	4.3 Binary Hypothesis Testing (BHT)
	4.4  The SST PSF Modeling
	4.5 Data Normalization Using Outlier Rejection Techniques
	4.6 Multi-hypothesis testing (MHT)
	/
	/
	4.7 Conclusions

	V. Phase Retrieval with a Short Exposure Atmosphere
	5.1 Introduction
	5.1.1 Generalized Pupil Function
	5.1.2 Intensity Model and PSF Estimation

	5.2 Direct Search LS vs. E-Field based Estimation
	5.2.1 E-Field versus Intensity Pattern Correlation
	5.2.2 Least Squares Zernike Coefficient Estimation
	5.2.3 E-Field Zernike Coefficient Estimation
	5.2.4 New Phase Retrieval Algorithm

	5.3 Laboratory Demonstrations
	5.3.1 Defocus
	5.3.2 Astigmatism

	5.4 Conclusions

	VI. Conclusions
	6.1 Long Exposure Phase Retrieval Improvements
	6.2 Telescope Detection Improvements
	6.3 Short Exposure Phase Retrieval Improvements
	6.4 Future Work
	6.5 Final Observations

	VII. Appendices
	A.1 The SST’s CCD Noise Statistics
	A.2 The SST’s CCD Pixel Independence
	A.3 Aberration Calculations for a Single Lens

	Bibliography

	Zingarelli signature page
	AFIT-ENG-DS-13-D-04
	AFIT-ENG-DS-13-D-04
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	I.  Introduction
	1.1 Motivation
	1.2 Accomplished Work

	II. Background
	2.1 Telescope Model
	2.1.1  Zernike Polynomial for Defocus
	2.1.2  Zernike Polynomials and the Generalized Pupil Function
	2.1.3 Intensity Model and PSF Estimation

	2.2 Phase Retrieval from Stellar Images
	2.2.1 CRLB for Zernike Coefficients
	2.2.2 Least Squares and Gerchberg-Saxton Phase Retrieval
	2.2.3 Curvature Sensing

	2.3 Atmospheric Models
	2.3.1 Long Exposure Atmosphere
	2.3.2 Short Exposure Atmosphere

	2.4 Detectors
	2.4.1 Point Detection
	2.4.2 Correlation versus Point Detection
	2.4.3 Undersampling and Correlation Detection

	2.5 Conclusions

	III. Phase Retrieval with a Long Exposure Atmosphere
	3.1 Telescope Model
	3.2 Cramer-Rao Lower Bounds (CRLB) for Variance
	3.3 Parameter Estimation
	3.4 Phase Retrieval Simulations
	3.5 Laboratory Demonstration
	3.6 Joint Estimation of Spherical Error, Defocus, and Atmospheric Seeing
	3.7 Conclusions

	IV. Improving Detection using Multi-hypothesis Testing
	4.1 Introduction
	4.2  The SST Experimental Description
	4.2.1 Experimental Setup and Process Overview
	4.2.2 The SST System
	4.2.3 The SST Detection Process

	4.3 Binary Hypothesis Testing (BHT)
	4.4  The SST PSF Modeling
	4.5 Data Normalization Using Outlier Rejection Techniques
	4.6 Multi-hypothesis testing (MHT)
	/
	/
	4.7 Conclusions

	V. Phase Retrieval with a Short Exposure Atmosphere
	5.1 Introduction
	5.1.1 Generalized Pupil Function
	5.1.2 Intensity Model and PSF Estimation

	5.2 Direct Search LS vs. E-Field based Estimation
	5.2.1 E-Field versus Intensity Pattern Correlation
	5.2.2 Least Squares Zernike Coefficient Estimation
	5.2.3 E-Field Zernike Coefficient Estimation
	5.2.4 New Phase Retrieval Algorithm

	5.3 Laboratory Demonstrations
	5.3.1 Defocus
	5.3.2 Astigmatism

	5.4 Conclusions

	VI. Conclusions
	6.1 Long Exposure Phase Retrieval Improvements
	6.2 Telescope Detection Improvements
	6.3 Short Exposure Phase Retrieval Improvements
	6.4 Future Work
	6.5 Final Observations

	VII. Appendices
	A.1 The SST’s CCD Noise Statistics
	A.2 The SST’s CCD Pixel Independence
	A.3 Aberration Calculations for a Single Lens

	Bibliography


